Original Research2 August 2016
    Author, Article, and Disclosure Information

    Abstract

    Background:

    Trends in the prevalence of chronic kidney disease (CKD) are important for health care policy and planning.

    Objective:

    To update trends in CKD prevalence.

    Design:

    Repeated cross-sectional study.

    Setting:

    NHANES (National Health and Nutrition Examination Survey) for 1988 to 1994 and every 2 years from 1999 to 2012.

    Participants:

    Adults aged 20 years or older.

    Measurements:

    Chronic kidney disease (stages 3 and 4) was defined as an estimated glomerular filtration rate (eGFR) of 15 to 59 mL/min/1.73 m2, estimated with the Chronic Kidney Disease Epidemiology Collaboration equation from calibrated serum creatinine measurements. An expanded definition of CKD also included persons with an eGFR of at least 60 mL/min/1.73 m2 and a 1-time urine albumin–creatinine ratio of at least 30 mg/g.

    Results:

    The unadjusted prevalence of stage 3 and 4 CKD increased from the late 1990s to the early 2000s. Since 2003 to 2004, however, the overall prevalence has largely stabilized (for example, 6.9% prevalence in 2003 to 2004 and in 2011 to 2012). There was little difference in adjusted prevalence of stage 3 and 4 CKD overall in 2003 to 2004 versus 2011 to 2012 after age, sex, race/ethnicity, and diabetes mellitus status were controlled for ( P  = 0.26). Lack of increase in CKD prevalence since the early 2000s was observed in most subgroups and with an expanded definition of CKD that included persons with higher eGFRs and albuminuria.

    Limitation:

    Serum creatinine and albuminuria were measured only once in each person.

    Conclusion:

    In a reversal of prior trends, there has been no appreciable increase in the prevalence of stage 3 and 4 CKD in the U.S. population overall during the most recent decade.

    Primary Funding Source:

    American Society of Nephrology Foundation for Kidney Research Student Scholar Grant Program, Centers for Disease Control and Prevention, and National Institutes of Health.

    References

    • 1. United States Renal Data System. 2015 USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States. Bethesda, MD: National Institutes of Health; 2015. Accessed at www.usrds.org/2015/view/Default.aspx on 11 November 2015. Google Scholar
    • 2. Levey ASAndreoli SPDuBose TProvenzano RCollins AJChronic kidney disease: common, harmful, and treatable—World Kidney Day 2007. J Am Soc Nephrol2007;18:374-8. [PMID: 17229914] CrossrefMedlineGoogle Scholar
    • 3. Meguid ElNahas ABello AKChronic kidney disease: the global challenge. Lancet2005;365:331-40. [PMID: 15664230] CrossrefMedlineGoogle Scholar
    • 4. Coresh JSelvin EStevens LAManzi JKusek JWEggers Pet alPrevalence of chronic kidney disease in the United States. JAMA2007;298:2038-47. [PMID: 17986697] CrossrefMedlineGoogle Scholar
    • 5. Grams MEJuraschek SPSelvin EFoster MCInker LAEckfeldt JHet alTrends in the prevalence of reduced GFR in the United States: a comparison of creatinine- and cystatin C-based estimates. Am J Kidney Dis2013;62:253-60. [PMID: 23619125] doi:10.1053/j.ajkd.2013.03.013 CrossrefMedlineGoogle Scholar
    • 6. Hsu RKHsu CYTemporal trends in prevalence of CKD: the glass is half full and not half empty [Editorial]. Am J Kidney Dis2013;62:214-6. [PMID: 23883656] doi:10.1053/j.ajkd.2013.05.003 CrossrefMedlineGoogle Scholar
    • 7. Hsu CYVittinghoff ELin FShlipak MGThe incidence of end-stage renal disease is increasing faster than the prevalence of chronic renal insufficiency. Ann Intern Med2004;141:95-101. [PMID: 15262664]. doi:10.7326/0003-4819-141-2-200407200-00007 LinkGoogle Scholar
    • 8. Coresh JByrd-Holt DAstor BCBriggs JPEggers PWLacher DAet alChronic kidney disease awareness, prevalence, and trends among U.S. adults, 1999 to 2000. J Am Soc Nephrol2005;16:180-8. [PMID: 15563563] CrossrefMedlineGoogle Scholar
    • 9. Foley RNWang CSnyder JJCollins AJCystatin C levels in U.S. adults, 1988–1994 versus 1999–2002: NHANES. Clin J Am Soc Nephrol2009;4:965-72. [PMID: 19339409] doi:10.2215/CJN.05281008 CrossrefMedlineGoogle Scholar
    • 10. Go ASChertow GMFan DMcCulloch CEHsu CYChronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med2004;351:1296-305. [PMID: 15385656] CrossrefMedlineGoogle Scholar
    • 11. Jha VGarcia-Garcia GIseki KLi ZNaicker SPlattner Bet alChronic kidney disease: global dimension and perspectives. Lancet2013;382:260-72. [PMID: 23727169] doi:10.1016/S0140-6736(13)60687-X CrossrefMedlineGoogle Scholar
    • 12. Hsu CYOrdoñez JDChertow GMFan DMcCulloch CEGo ASThe risk of acute renal failure in patients with chronic kidney disease. Kidney Int2008;74:101-7. [PMID: 18385668] doi:10.1038/ki.2008.107 CrossrefMedlineGoogle Scholar
    • 13. Brück KStel VSGambaro GHallan SVölzke HÄrnlöv Jet alEuropean CKD Burden ConsortiumCKD prevalence varies across the European general population. J Am Soc Nephrol2016;27:2134-47. [PMID: 26701975] CrossrefMedlineGoogle Scholar
    • 14. Healthy People 2020. Chronic Kidney Disease. Washington, DC: U.S. Department of Health and Human Services; 2016. Accessed at www.healthypeople.gov/2020/topics-objectives/topic/chronic-kidney-disease/objectives on 27 October 2015. Google Scholar
    • 15. National Center for Health Statistics. National Health and Nutrition Examination Survey. Atlanta, GA: Centers for Disease Control and Prevention; 2016. Accessed at www.cdc.gov/nchs/nhanes.htm on 12 November 2015. Google Scholar
    • 16. National Kidney FoundationK/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis2002;39:S1-266. [PMID: 11904577] MedlineGoogle Scholar
    • 17. Levey ASEckardt KUTsukamoto YLevin ACoresh JRossert Jet alDefinition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int2005;67:2089-100. [PMID: 15882252] CrossrefMedlineGoogle Scholar
    • 18. Levey ASStevens LASchmid CHZhang YLCastro AFFeldman HIet alCKD-EPI (Chronic Kidney Disease Epidemiology Collaboration)A new equation to estimate glomerular filtration rate. Ann Intern Med2009;150:604-12. [PMID: 19414839]. doi:10.7326/0003-4819-150-9-200905050-00006 LinkGoogle Scholar
    • 19. Levey ASCoresh JGreene TStevens LAZhang YLHendriksen Set alChronic Kidney Disease Epidemiology CollaborationUsing standardized serum creatinine values in the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate. Ann Intern Med2006;145:247-54. [PMID: 16908915]. doi:10.7326/0003-4819-145-4-200608150-00004 LinkGoogle Scholar
    • 20. Saydah SHPavkov MEZhang CLacher DAEberhardt MSBurrows NRet alAlbuminuria prevalence in first morning void compared with previous random urine from adults in the National Health and Nutrition Examination Survey, 2009–2010. Clin Chem2013;59:675-83. [PMID: 23315482] doi:10.1373/clinchem.2012.195644 CrossrefMedlineGoogle Scholar
    • 21. International Expert CommitteeInternational Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care2009;32:1327-34. [PMID: 19502545] doi:10.2337/dc09-9033 CrossrefMedlineGoogle Scholar
    • 22. National Center for Health StatisticsNational Health and Nutrition Examination Survey: Analytic Guidelines, 1999–2010. Washington, DC: US Gov Pr Office; 2013. Google Scholar
    • 23. National Center for Health Statistics. National Health and Nutrition Examination Survey: Analytic Guidelines, 2011-2012. Atlanta, GA: Centers for Disease Control and Prevention; 2013. Accessed at www.cdc.gov/nchs/data/nhanes/analytic_guidelines_11_12.pdf on 5 December 2015. Google Scholar
    • 24. Vittinghoff EGlidden DGShiboski SCMcCulloch CERegression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models. 2nd ed. New York: Springer-Verlag; 2012:347-50. Google Scholar
    • 25. Aitken GRRoderick PJFraser SMindell JSO'Donoghue DDay Jet alChange in prevalence of chronic kidney disease in England over time: comparison of nationally representative cross-sectional surveys from 2003 to 2010. BMJ Open2014;4:e005480. [PMID: 25270853] doi:10.1136/bmjopen-2014-005480 CrossrefMedlineGoogle Scholar
    • 26. Hsu CYLin FVittinghoff EShlipak MGRacial differences in the progression from chronic renal insufficiency to end-stage renal disease in the United States. J Am Soc Nephrol2003;14:2902-7. [PMID: 14569100] CrossrefMedlineGoogle Scholar
    • 27. Parsa AKao WHXie DAstor BCLi MHsu CYet alAASK and CRI Study InvestigatorsAPOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med2013;369:2183-96. [PMID: 24206458] doi:10.1056/NEJMoa1310345 CrossrefMedlineGoogle Scholar
    • 28. de Boer IHRue TCHall YNHeagerty PJWeiss NSHimmelfarb JTemporal trends in the prevalence of diabetic kidney disease in the United States. JAMA2011;305:2532-9. [PMID: 21693741] doi:10.1001/jama.2011.861 CrossrefMedlineGoogle Scholar
    • 29. Parving HHAndersen ARSmidt UMSvendsen PAEarly aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet1983;1:1175-9. [PMID: 6133986] CrossrefMedlineGoogle Scholar
    • 30. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ1998;317:703-13. [PMID: 9732337] CrossrefMedlineGoogle Scholar
    • 31. Lewis EJHunsicker LGBain RPRohde RDThe effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med1993;329:1456-62. [PMID: 8413456] CrossrefMedlineGoogle Scholar
    • 32. de Boer IHSun WCleary PALachin JMMolitch MESteffes MWet alDCCT/EDIC Research GroupIntensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med2011;365:2366-76. [PMID: 22077236] doi:10.1056/NEJMoa1111732 CrossrefMedlineGoogle Scholar
    • 33. Finne PReunanen AStenman SGroop PHGrönhagen-Riska CIncidence of end-stage renal disease in patients with type 1 diabetes. JAMA2005;294:1782-7. [PMID: 16219881] CrossrefMedlineGoogle Scholar
    • 34. Gregg EWLi YWang JBurrows NRAli MKRolka Det alChanges in diabetes-related complications in the United States, 1990–2010. N Engl J Med2014;370:1514-23. [PMID: 24738668] doi:10.1056/NEJMoa1310799 CrossrefMedlineGoogle Scholar
    • 35. Plantinga LCMiller ERStevens LASaran RMesser KFlowers Net alCenters for Disease Control and Prevention Chronic Kidney Disease Surveillance TeamBlood pressure control among persons without and with chronic kidney disease: US trends and risk factors 1999–2006. Hypertension2009;54:47-56. [PMID: 19470881] doi:10.1161/HYPERTENSIONAHA.109.129841 CrossrefMedlineGoogle Scholar
    • 36. Gu QPaulose-Ram RDillon CBurt VAntihypertensive medication use among US adults with hypertension. Circulation2006;113:213-21. [PMID: 16391156] CrossrefMedlineGoogle Scholar
    • 37. Gu QBurt VLDillon CFYoon STrends in antihypertensive medication use and blood pressure control among United States adults with hypertension: the National Health And Nutrition Examination Survey, 2001 to 2010. Circulation2012;126:2105-14. [PMID: 23091084] doi:10.1161/CIRCULATIONAHA.112.096156 CrossrefMedlineGoogle Scholar
    • 38. Yoon SSGu QNwankwo TWright JDHong YBurt VTrends in blood pressure among adults with hypertension: United States, 2003 to 2012. Hypertension2015;65:54-61. [PMID: 25399687] doi:10.1161/HYPERTENSIONAHA.114.04012 CrossrefMedlineGoogle Scholar
    • 39. Selvin EParrinello CMSacks DBCoresh JTrends in prevalence and control of diabetes in the United States, 1988–1994 and 1999–2010. Ann Intern Med2014;160:517-25. [PMID: 24733192]. doi:10.7326/M13-2411 LinkGoogle Scholar
    • 40. Reule SSexton DJSolid CAChen SCFoley RNESRD due to multiple myeloma in the United States, 2001–2010. J Am Soc Nephrol2016;27:1487-94. [PMID: 26516209] doi:10.1681/ASN.2014090876 CrossrefMedlineGoogle Scholar
    • 41. Cowie CCRust KFByrd-Holt DDGregg EWFord ESGeiss LSet alPrevalence of diabetes and high risk for diabetes using A1C criteria in the U.S. population in 1988–2006. Diabetes Care2010;33:562-8. [PMID: 20067953] doi:10.2337/dc09-1524 CrossrefMedlineGoogle Scholar
    • 42. Selvin EManzi JStevens LAVan Lente FLacher DALevey ASet alCalibration of serum creatinine in the National Health and Nutrition Examination Surveys (NHANES) 1988–1994, 1999–2004. Am J Kidney Dis2007;50:918-26. [PMID: 18037092] CrossrefMedlineGoogle Scholar
    • 43. Levey ASGreene TKusek JWBeck GJA simplified equation to predict glomerular filtration rate from serum creatinine [Abstract]. J Am Soc Nephrol2000;11:155A. Google Scholar
    • 44. Stevens LACoresh JSchmid CHFeldman HIFroissart MKusek Jet alEstimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am J Kidney Dis2008;51:395-406. [PMID: 18295055] doi:10.1053/j.ajkd.2007.11.018 CrossrefMedlineGoogle Scholar
    • 45. Inker LASchmid CHTighiouart HEckfeldt JHFeldman HIGreene Tet alCKD-EPI InvestigatorsEstimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med2012;367:20-9. [PMID: 22762315] doi:10.1056/NEJMoa1114248 CrossrefMedlineGoogle Scholar