Editorials1 May 2007
    Author, Article, and Disclosure Information

    In this issue, van der Steeg and colleagues report the results of a nested case–control study demonstrating that the apolipoprotein B–apolipoprotein A-I (apo B–apo A-I) ratio is a risk factor for future coronary events, independent of low-density lipoprotein cholesterol level, high-density lipoprotein cholesterol level, and other traditional risk factors (1). The study also suggests that the apo B–apo A-I ratio negligibly improves overall risk prediction compared with conventional coronary risk factors and the Framingham risk score. This latter finding contradicts an emerging literature that enthusiastically endorses the apo B–apo A-I ratio as an improved measure of risk (2–5). It is ...

    References

    • 1. van der Steeg WABoekholdt SMStein EAEl-Harchaoui KStroes ESSandhu MSet alRole of the apolipoprotein B–apolipoprotein A-I ratio in cardiovascular risk assessment: a case–control analysis in the EPIC-Norfolk. Ann Intern Med2007;146:640-8. LinkGoogle Scholar
    • 2. Walldius GJungner IHolme IAastveit AHKolar WSteiner EHigh apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. Lancet2001;358:2026-33. [PMID: 11755609] CrossrefMedlineGoogle Scholar
    • 3. INTERHEART Study InvestigatorsEffect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case–control study. Lancet2004;364:937-52. [PMID: 15364185] CrossrefMedlineGoogle Scholar
    • 4. Barter PJBallantyne CMCarmena RCastro Cabezas MChapman MJCouture Pet alApo B versus cholesterol in estimating cardiovascular risk and in guiding therapy: report of the thirty-person/ten-country panel. J Intern Med2006;259:247-58. [PMID: 16476102] CrossrefMedlineGoogle Scholar
    • 5. Sacks FMThe apolipoprotein story. Atheroscler Suppl2006;7:23-7. [PMID: 16822722] CrossrefMedlineGoogle Scholar
    • 6. Aronowitz RAMaking Sense of Illness: Science, Society, and Disease. New York: Cambridge Univ Pr; 1998:111-44. Google Scholar
    • 7. Rothstein WGPublic Health and the Risk Factor: A History of an Uneven Medical Revolution. Rochester, NY: Univ of Rochester Pr; 2003. Google Scholar
    • 8. Kannel WBDawber TRKagan ARevotskie NStokes JFactors of risk in the development of coronary heart disease—six year follow-up experience. The Framingham Study. Ann Intern Med1961;55:33-50. [PMID: 13751193] LinkGoogle Scholar
    • 9. Braitman LEDavidoff FPredicting clinical states in individual patients. Ann Intern Med1996;125:406-12. [PMID: 8702092] LinkGoogle Scholar
    • 10. Reilly BMEvans ATTranslating clinical research into clinical practice: impact of using prediction rules to make decisions. Ann Intern Med2006;144:201-9. [PMID: 16461965] LinkGoogle Scholar
    • 11. Harrell FERegression Modeling Strategies. New York: Springer-Verlag; 2001. Google Scholar
    • 12. Pepe MSThe Statistical Evaluation of Medical Tests for Classification and Prediction. New York: Oxford Univ Pr; 2003. Google Scholar
    • 13. CHD Risk Prediction GroupValidation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. JAMA2001;286:180-7. [PMID: 11448281] CrossrefMedlineGoogle Scholar
    • 14. Liu JHong YD'Agostino RBWu ZWang WSun Jet alPredictive value for the Chinese population of the Framingham CHD risk assessment tool compared with the Chinese Multi-Provincial Cohort Study. JAMA2004;291:2591-9. [PMID: 15173150] CrossrefMedlineGoogle Scholar
    • 15. Hosmer DWLemeshow SApplied Logistic Regression. New York: John Wiley; 1989. Google Scholar
    • 16. Kattan MWJudging new markers by their ability to improve predictive accuracy [Editorial]. J Natl Cancer Inst2003;95:634-5. [PMID: 12734304] CrossrefMedlineGoogle Scholar
    • 17. Pepe MSJanes HLongton GLeisenring WNewcomb PLimitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am J Epidemiol2004;159:882-90. [PMID: 15105181] CrossrefMedlineGoogle Scholar
    • 18. Ware JHThe limitations of risk factors as prognostic tools. N Engl J Med2006;355:2615-7. [PMID: 17182986] CrossrefMedlineGoogle Scholar
    • 19. Cook NRBuring JERidker PMThe effect of including C-reactive protein in cardiovascular risk prediction models for women. Ann Intern Med2006;145:21-9. [PMID: 16818925] LinkGoogle Scholar
    • 20. Cook NRUse and misuse of the receiver operating characteristic curve in risk prediction. Circulation2007;115:928-35. [PMID: 17309939] CrossrefMedlineGoogle Scholar