Articles15 June 2004
    Author, Article, and Disclosure Information



    Visceral adiposity is generally considered to play a key role in the metabolic syndrome.


    To examine the relationship between directly measured visceral adiposity and the risk for incident hypertension, independent of other adipose depots and fasting plasma insulin levels.


    Community-based prospective cohort study with 10- to 11-year follow-up.


    King County, Washington.


    300 Japanese Americans with a systolic blood pressure less than 140 mm Hg and a diastolic blood pressure less than 90 mm Hg who were not taking antihypertensive medications, oral hypoglycemic medications, or insulin at study entry.


    Abdominal, thoracic, and thigh fat areas were measured by using computed tomography. Total subcutaneous fat area was calculated as the sum of these fat areas excluding the intra-abdominal fat area. Hypertension during follow-up was defined as having a systolic blood pressure of 140 mm Hg or greater, having a diastolic blood pressure of 90 mm Hg or greater, or taking antihypertensive medications.


    There were 92 incident cases of hypertension during the follow-up period. The intra-abdominal fat area was associated with an increased risk for hypertension. Multiple-adjusted odds ratios of hypertension for quartiles of intra-abdominal fat area (1 = lowest; 4 = highest) were 5.07 (95% CI, 1.75 to 14.73) for quartile 3 and 3.48 (CI, 1.01 to 11.99) for quartile 4 compared with quartile 1 after adjustment for age, sex, fasting plasma insulin level, 2-hour plasma glucose level, body mass index, systolic blood pressure, alcohol consumption, smoking status, and energy expenditure through exercise (P = 0.003 for quadratic trend). The intra-abdominal fat area remained a significant risk factor for hypertension, even after adjustment for total subcutaneous fat area, abdominal subcutaneous fat area, or waist circumference; however, no measure of these fat areas was associated with risk for hypertension in models that contained the intra-abdominal fat area.


    It is not known whether these results pertain to other ethnic groups.


    Greater visceral adiposity increases the risk for hypertension in Japanese Americans.


    • 1. Kaplan NMThe deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med1989;149:1514-20. [PMID: 2662932] CrossrefMedlineGoogle Scholar
    • 2. Despres JPMoorjani SLupien PJTremblay ANadeau ABouchard CRegional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis1990;10:497-511. [PMID: 2196040] CrossrefMedlineGoogle Scholar
    • 3. Boyko EJLeonetti DLBergstrom RWNewell-Morris LFujimoto WYVisceral adiposity, fasting plasma insulin, and blood pressure in Japanese-Americans. Diabetes Care1995;18:174-81. [PMID: 7729294] CrossrefMedlineGoogle Scholar
    • 4. Hayashi TBoyko EJLeonetti DLMcNeely MJNewell-Morris LKahn SEet al Visceral adiposity and the prevalence of hypertension in Japanese Americans. Circulation2003;108:1718-23. [PMID: 12975250] CrossrefMedlineGoogle Scholar
    • 5. Boyko EJLeonetti DLBergstrom RWNewell-Morris LFujimoto WYVisceral adiposity, fasting plasma insulin, and lipid and lipoprotein levels in Japanese Americans. Int J Obes Relat Metab Disord1996;20:801-8. [PMID: 8880345] MedlineGoogle Scholar
    • 6. Fujimoto WYBergstrom RWBoyko EJChen KWLeonetti DLNewell-Morris Let al Visceral adiposity and incident coronary heart disease in Japanese-American men. The 10-year follow-up results of the Seattle Japanese-American Community Diabetes Study. Diabetes Care1999;22:1808-12. [PMID: 10546012] CrossrefMedlineGoogle Scholar
    • 7. Boyko EJFujimoto WYLeonetti DLNewell-Morris LVisceral adiposity and risk of type 2 diabetes: a prospective study among Japanese Americans. Diabetes Care2000;23:465-71. [PMID: 10857936] CrossrefMedlineGoogle Scholar
    • 8. Folsom ARPrineas RJKaye SASoler JTBody fat distribution and self-reported prevalence of hypertension, heart attack, and other heart disease in older women. Int J Epidemiol1989;18:361-7. [PMID: 2767849] CrossrefMedlineGoogle Scholar
    • 9. Okosun ISPrewitt TECooper RSAbdominal obesity in the United States: prevalence and attributable risk of hypertension. J Hum Hypertens1999;13:425-30. [PMID: 10449204] CrossrefMedlineGoogle Scholar
    • 10. Cassano PASegal MRVokonas PSWeiss STBody fat distribution, blood pressure, and hypertension. A prospective cohort study of men in the normative aging study. Ann Epidemiol1990;1:33-48. [PMID: 1669488] CrossrefMedlineGoogle Scholar
    • 11. Folsom ARPrineas RJKaye SAMunger RGIncidence of hypertension and stroke in relation to body fat distribution and other risk factors in older women. Stroke1990;21:701-6. [PMID: 2339449] CrossrefMedlineGoogle Scholar
    • 12. Gillum RFMussolino MEMadans JHBody fat distribution and hypertension incidence in women and men. The NHANES I Epidemiologic Follow-up Study. Int J Obes Relat Metab Disord1998;22:127-34. [PMID: 9504320] CrossrefMedlineGoogle Scholar
    • 13. Haffner SMValdez RMorales PAMitchell BDHazuda HPStern MPGreater effect of glycemia on incidence of hypertension in women than in men. Diabetes Care1992;15:1277-84. [PMID: 1425089] CrossrefMedlineGoogle Scholar
    • 14. Haffner SMMiettinen HGaskill SPStern MPMetabolic precursors of hypertension. The San Antonio Heart Study. Arch Intern Med1996;156:1994-2001. [PMID: 8823152] CrossrefMedlineGoogle Scholar
    • 15. Shetterly SMRewers MHamman RFMarshall JAPatterns and predictors of hypertension incidence among Hispanics and non-Hispanic whites: the San Luis Valley Diabetes Study. J Hypertens1994;12:1095-102. [PMID: 7852755] CrossrefMedlineGoogle Scholar
    • 16. Johnson DPrud'homme DDespres JPNadeau ATremblay ABouchard CRelation of abdominal obesity to hyperinsulinemia and high blood pressure in men. Int J Obes Relat Metab Disord1992;16:881-90. [PMID: 1337343] MedlineGoogle Scholar
    • 17. Fujimoto WYLeonetti DLKinyoun JLShuman WPStolov WCWahl PWPrevalence of complications among second-generation Japanese-American men with diabetes, impaired glucose tolerance, or normal glucose tolerance. Diabetes1987;36:730-9. [PMID: 3569672] CrossrefMedlineGoogle Scholar
    • 18. Fujimoto WYBergstrom RWLeonetti DLNewell-Morris LLShuman WPWahl PWMetabolic and adipose risk factors for NIDDM and coronary disease in third-generation Japanese-American men and women with impaired glucose tolerance. Diabetologia1994;37:524-32. [PMID: 8056192] CrossrefMedlineGoogle Scholar
    • 19. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care1997;20:1183-97. [PMID: 9203460] CrossrefMedlineGoogle Scholar
    • 20. Warnick GREnzymatic methods for quantification of lipoprotein lipids. Methods Enzymol1986;129:101-23. [PMID: 3724535] CrossrefMedlineGoogle Scholar
    • 21. Shuman WPMorris LLLeonetti DLWahl PWMoceri VMMoss AAet al Abnormal body fat distribution detected by computed tomography in diabetic men. Invest Radiol1986;21:483-7. [PMID: 3721806] CrossrefMedlineGoogle Scholar
    • 22. Schoen REThaete FLSankey SSWeissfeld JLKuller LHSagittal diameter in comparison with single slice CT as a predictor of total visceral adipose tissue volume. Int J Obes Relat Metab Disord1998;22:338-42. [PMID: 9578239] CrossrefMedlineGoogle Scholar
    • 23. Han TSKelly IEWalsh KGreene RMLean MERelationship between volumes and areas from single transverse scans of intra-abdominal fat measured by magnetic resonance imaging. Int J Obes Relat Metab Disord1997;21:1161-6. [PMID: 9426384] CrossrefMedlineGoogle Scholar
    • 24. McNeely MJShofer JBSchwartz RSLeonetti DLBoyko EJNewell-Morris Let al Use of computed tomography regional fat areas to estimate adiposity: correlation with hydrodensitometry, bioelectrical impedence, skinfold thickness, and body mass index. Obes Res1999;7 Suppl 1 47S. Google Scholar
    • 25. Leonetti DLTsunehara CHWahl PWFujimoto WYEducational attainment and the risk of non–insulin-dependent diabetes or coronary heart disease in Japanese-American men. Ethn Dis1992;2:326-36. [PMID: 1490129] MedlineGoogle Scholar
    • 26. Rothman KJGreenland SMeasures of disease frequency.. In: Rothman KJ, Greenland S, eds. Modern Epidemiology. 2nd ed. Philadelphia: Lippincott–Raven; 1998:29-46. Google Scholar
    • 27. Hosmer DWLemeshow SApplied Logistic Regression. 2nd ed. New York: Wiley; 2000:91-116. Google Scholar
    • 28. Wannamethee SGCamargo CAManson JEWillett WCRimm EBAlcohol drinking patterns and risk of type 2 diabetes mellitus among younger women. Arch Intern Med2003;163:1329-36. [PMID: 12796069] CrossrefMedlineGoogle Scholar
    • 29. Kleinbaum DGLogistic Regression: A Self-Learning Text. 2nd ed. New York: Springer; 1994:191-222. Google Scholar
    • 30. Katz MHMultivariable analysis: a primer for readers of medical research. Ann Intern Med2003;138:644-50. [PMID: 12693887] LinkGoogle Scholar
    • 31. Glantz SASlinker BKPrimer of Applied Regression and Analysis of Variance. New York: McGraw-Hill; 1990:181-238. Google Scholar
    • 32. Kanai HMatsuzawa YKotani KKeno YKobatake TNagai Yet al Close correlation of intra-abdominal fat accumulation to hypertension in obese women. Hypertension1990;16:484-90. [PMID: 2228147] CrossrefMedlineGoogle Scholar
    • 33. Landsberg LInsulin-mediated sympathetic stimulation: role in the pathogenesis of obesity-related hypertension (or, how insulin affects blood pressure, and why). J Hypertens2001;19:523-8. [PMID: 11327624] CrossrefMedlineGoogle Scholar
    • 34. Gupta AKClark RVKirchner KAEffects of insulin on renal sodium excretion. Hypertension1992;19:I78-82. [PMID: 1730458] CrossrefMedlineGoogle Scholar
    • 35. Anderson EAHoffman RPBalon TWSinkey CAMark ALHyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest1991;87:2246-52. [PMID: 2040704] CrossrefMedlineGoogle Scholar
    • 36. Cardillo CNambi SSKilcoyne CMChoucair WKKatz AQuon MJet al Insulin stimulates both endothelin and nitric oxide activity in the human forearm. Circulation1999;100:820-5. [PMID: 10458717] CrossrefMedlineGoogle Scholar
    • 37. Wajchenberg BLSubcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev2000;21:697-738. [PMID: 11133069] CrossrefMedlineGoogle Scholar
    • 38. Kazumi TKawaguchi ASakai KHirano TYoshino GYoung men with high-normal blood pressure have lower serum adiponectin, smaller LDL size, and higher elevated heart rate than those with optimal blood pressure. Diabetes Care2002;25:971-6. [PMID: 12032101] CrossrefMedlineGoogle Scholar
    • 39. Poli KATofler GHLarson MGEvans JCSutherland PALipinska Iet al Association of blood pressure with fibrinolytic potential in the Framingham offspring population. Circulation2000;101:264-9. [PMID: 10645922] CrossrefMedlineGoogle Scholar
    • 40. Shimomura IFunahashi TTakahashi MMaeda KKotani KNakamura Tet al Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nat Med1996;2:800-3. [PMID: 8673927] CrossrefMedlineGoogle Scholar
    • 41. Alessi MCPeiretti FMorange PHenry MNalbone GJuhan-Vague IProduction of plasminogen activator inhibitor 1 by human adipose tissue: possible link between visceral fat accumulation and vascular disease. Diabetes1997;46:860-7. [PMID: 9133556] CrossrefMedlineGoogle Scholar
    • 42. Motoshima HWu XSinha MKHardy VERosato ELBarbot DJet al Differential regulation of adiponectin secretion from cultured human omental and subcutaneous adipocytes: effects of insulin and rosiglitazone. J Clin Endocrinol Metab2002;87:5662-7. [PMID: 12466369] CrossrefMedlineGoogle Scholar
    • 43. McNeely MJBoyko EJType 2 diabetes prevalence in Asian Americans: results of a national health survey. Diabetes Care2004;27:66-9. [PMID: 14693968] CrossrefMedlineGoogle Scholar
    • 44. Wang JThornton JCRussell MBurastero SHeymsfield SPierson RNAsians have lower body mass index (BMI) but higher percent body fat than do whites: comparisons of anthropometric measurements. Am J Clin Nutr1994;60:23-8. [PMID: 8017333] CrossrefMedlineGoogle Scholar