NIH Conferences1 January 1995
    Author, Article, and Disclosure Information

    Abstract

    The insulin-like growth factor (IGF) family of peptides, binding proteins, and receptors are important for normal human growth and development and are involved in the specialized functions of most physiologic systems. Most members of the IGF system are expressed by different cancer cells and may play an important role in the propagation of these malignancies. New therapies aimed at modulating various components of the IGF system could affect the progression and metastasis of cancer.

    References

    • 1. LeRoith D, Clemmons D, Nissley P, Rechler MM. NIH conference. Insulin-like growth factors in health and disease. Ann Intern Med. 1992; 116:854-62. Google Scholar
    • 2. Daughaday WH, Rotwein P. Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev. 1989; 10:68-91. Google Scholar
    • 3. Werner H, Woloschak M, Stannard B, Shen-Orr Z, Roberts CT Jr, LeRoith D. The insulin-like growth factor I receptor: molecular biology, heterogeneity and regulation. In: LeRoith D, ed. Insulin-like Growth Factors: Molecular and Cellular Aspects. Boca Raton, Florida: CRC Press; 1991:17-47. Google Scholar
    • 4. Rechler MM. Insulin-like growth factor binding proteins. Vitam Horm. 1993; 47:1-114. Google Scholar
    • 5. Macauly VM. Insulin-like growth factors and cancer. Br J Cancer. 1992; 65:311-20. Google Scholar
    • 6. Megyesi K, Kahn CR, Roth J, Gorden P. Hypoglycemia in association with extrapancreatic tumors: demonstration of elevated plasma NSILA-s by a new radioreceptor assay. J Clin Endocrinol Metab. 1974; 38:931-4. Google Scholar
    • 7. Lowe WL Jr, Roberts CT Jr, LeRoith D, Rojeski MT, Merimee TK, Fui ST, et al. Insulin-like growth factor-II in nonislet cell tumors associated with hypoglycemia: increased levels of messenger ribonucleic acid. J Clin Endocrinol Metab. 1989:69; 1153-9. Google Scholar
    • 8. Baxter RC, Daughaday WH. Impaired formation of the ternary insulin-like growth factor-binding protein complex in patients with hypoglycemia due to nonislet cell tumors. J Clin Endocrinol Metab. 1991; 73:696-702. Google Scholar
    • 9. Baserga R, Rubin R. Cell cycle and growth control. Crit Rev Eukaryot Gene Expr. 1993; 3:47-61. Google Scholar
    • 10. Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell. 1993; 75:59-72. Google Scholar
    • 11. Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell. 1993; 75:73-82. Google Scholar
    • 12. Kaleko M, Rutter WJ, Miller D. Overexpression of the human insulinlike growth factor I receptor promotes ligand-dependent neoplastic transformation. Mol Cell Biol. 1990; 10:464-73. Google Scholar
    • 13. Prager D, Li HL, Asa S, Melmed S. Dominant negative inhibition of tumorigenesis in vivo by human insulin-like growth factor I receptor mutant. Proc Natl Acad Sci U S A. 1994; 91:2181-5. Google Scholar
    • 14. Sell C, Rubini M, Rubin R, Liu JP, Efstratiadis A, Baserga R. Simian virus 40 large tumor antigen is unable to transform mouse embryonic fibroblasts lacking type-1 insulin-like growth factor receptor. Proc Natl Acad Sci U S A. 1993; 90:11217-21. Google Scholar
    • 15. Porcu P, Ferber A, Pietrzkowski Z, Roberts CT, Adamo M, LeRoith D, et al. The growth-stimulatory effect of simian virus 40 T antigen requires the interaction of insulinlike growth factor I with its receptor. Mol Cell Biol. 1992; 12:3883-9. Google Scholar
    • 16. Resnicoff M, Sell C, Rubini M, Baserga R. Rat glioblastoma cells expressing an antisense RNA to the insulin-like growth factor-I (IGF-I) receptor are non-tumorigenic and induce regression of wild type tumors. Cancer Res. 1994; (In press). Google Scholar
    • 17. White MF, Kahn CR. The insulin signaling system. J Biol Chem. 1994; 269:1-4. Google Scholar
    • 18. Sell C, Dumenil G, Deveaud C, Efstratiadis A, Baserga R. Effect of a null mutation of the type 1 IGF receptor gene on growth and transformation of mouse embryo fibroblasts. Mol Cell Biol. 1994; (In press). Google Scholar
    • 19. Lerner L, Jordan V. Development of antiestrogens and their use in breast cancer: eighth Cain memorial award lecture. Cancer Res. 1990; 50:4177-89. Google Scholar
    • 20. Dickson RB, Johnson MD, Bano M, Shi E, Kurebayashi J, Ziff B, et al. Growth factors in breast cancer: mitogenesis to transformation. J Steroid Biochem Mol Biol. 1992; 43:69-78. Google Scholar
    • 21. Yee D, Cullen KJ, Paik S, Perdue JF, Hampton B, Schwartz A, et al. Insulin-like growth factor II mRNA expression in human breast cancer. Cancer Res. 1988; 48:6691-6. Google Scholar
    • 22. Yee D, Paik S, Lebovic GS, Marcus RR, Favoni RE, Cullen KJ, et al. Analysis of insulin-like growth factor I gene expression in malignancy: evidence for a paracrine role in human breast cancer. Mol Endocrinol. 1989; 3:509-17. Google Scholar
    • 23. Peyrat JP, Bonneterre H, Vennin PH, Jammes H, Beuscart R, Hecquet B, et al. Insulin-like growth factor 1 receptors (IGF1-R) and IGF1 in human breast tumors. J Steroid Biochem Mol Biol. 1990; 37:823-7. Google Scholar
    • 24. Clemmons DR, Camacho-Hubner C, Coronado E, Osborne CK. Insulin-like growth factor binding protein secretion by breast carcinoma cell lines: correlation with estrogen receptor status. Endocrinology. 1990; 127:2679-86. Google Scholar
    • 25. Shao ZM, Sheikh MS, Ordonez JV, Feng P, Kute T, Chen JC, et al. IGFBP-3 gene expression and estrogen receptor status in human breast carcinoma. Cancer Res. 1992; 52:5100-3. Google Scholar
    • 26. Pollak MN, Huynh HT, Lefebvre SP. Tamoxifen reduces serum insulin-like growth factor I (IGF-I). Breast Cancer Res Treat. 1992; 22:91-100. Google Scholar
    • 27. Colletti RB, Roberts JD, Devlin JT, Copeland KC. Effect of tamoxifen on plasma insulin-like growth factor I in patients with breast cancer. Cancer Res. 1989; 49:1882-4. Google Scholar
    • 28. Fontana JA, Burrows-Mezu A, Clemmons DR, LeRoith D. Retinoid modulation of insulin-like growth factor-binding proteins and inhibition of breast carcinoma proliferation. Endocrinology. 1991; 128:1115-22. Google Scholar
    • 29. Torrisi R, Pensa F, Orengo MA, Catsafados E, Ponzani P, Boccardo F, et al. The synthetic retinoid fenretinide lowers plasma insulin-like growth factor I levels in breast cancer patients. Cancer Res. 1993; 53:4769-71. Google Scholar
    • 30. Adamo ML, Shao ZM, Lanau F, Chen JC, Clemmons DR, Roberts CT Jr, et al. Insulin-like growth factor-I (IGF-I) and retinoic acid modulation of IGF-binding proteins (IGFBPs): IGFBP-2, -3, and -4 gene expression and protein secretion in a breast cancer cell line. Endocrinology. 1992; 131:1858-66. Google Scholar
    • 31. El-Badry OM, Minniti C, Kohn EC, Houghton PJ, Daughaday WH, Helman LJ. Insulin-like growth factor II acts as an autocrine growth and motility factor in human rhabdomyosarcoma tumors. Cell Growth Differ. 1990; 1:325-31. Google Scholar
    • 32. Minniti CP, Tsokos M, Newton WA Jr, Helman LJ. Specific expression of insulin-like growth factor-II in rhabdomyosarcoma tumor cells. Am J Clin Pathol. 1994; 101:198-203. Google Scholar
    • 33. Ogawa O, Eccles MR, Szeto J, McNoe LR, Yun K, Maw MA, et al. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumor. Nature. 1993; 362:749-51. Google Scholar
    • 34. Rainer S, Johnson LA, Dobry CJ, Ping AJ, Grundy PE, Feinberg AP. Relaxation of imprinted genes in human cancer. Nature. 1993; 362:747-9. Google Scholar
    • 35. Scrable H, Cavenee W, Ghavimi F, Lovell M, Morgan K, Sapienza C. A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proc Natl Acad Sci U S A. 1989; 86:7480-4. Google Scholar
    • 36. Zhan S, Shapiro DN, Helman LJ. Activation of an imprinted allele of the insulin-like growth factor II gene implicated in rhabdomyosarcoma. J Clin Invest. 1994; 94:445-8. Google Scholar
    • 37. Kelebic T, Tsokos M, Helman LJ. In vivo treatment with antibody against IGF-I receptor suppresses growth of human rhabdomyosarcoma and downregulates p34 cdc-2. Cancer Res. 54:5331-4. Google Scholar
    • 38. Salmon WD, Daughaday WH. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med. 1957; 49:825-36. Google Scholar
    • 39. Pollak MN, Polychronakos C, Richard M. Insulin-like growth factor I: a potent mitogen for human osteogenic sarcoma. J Natl Cancer Inst. 1990; 82:301-5. Google Scholar
    • 40. McCumbee WD, McCarty KS Jr, Lebovitz HE. Hormone responsiveness of a transplantable rat chondrosarcoma. II. Evidence for in vivo hormone dependence. Endocrinology. 1980; 106:1930-40. Google Scholar
    • 41. Pollak M, Stern AW, Richard M, Tetenes E, Bell R. Inhibition of metastatic behavior of murine osteosarcoma by hypophysectomy. J Natl Cancer Inst. 1992; 84:966-71. Google Scholar
    • 42. Kappel CC, Velez-Yanguas MC, Hirschfeld S, Helman LJ. Human osteosarcoma cell lines are dependent on IGF-I for in vitro growth. Cancer Res. 1994; 54:2803-7. Google Scholar
    • 43. Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Cell. 1990; 60:509-20. Google Scholar
    • 44. Rauscher FJ 3d. The WT1 Wilms tumor gene product: a developmentally regulated transcription factor in the kidney that functions as a tumor suppressor. FASEB J. 1993; 7:896-903. Google Scholar
    • 45. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, et al. WT-1 is required for early kidney development. Cell. 1993; 74:679-91. Google Scholar
    • 46. Chin E, Bondy CA. Insulin-like growth factor system gene expression in the human kidney. J Clin Endocrinol Metab. 1992; 75:962-68. Google Scholar
    • 47. Chin E, Michels K, Bondy CA. Partition of insulin-like growth factor (IGF)-binding sites between the IGF-I and IGF-II receptors and IGF-binding proteins in the human kidney. J Clin Endocrinol Metab. 1994; 75:156-64. Google Scholar
    • 48. Gansler T, Furlanetto R, Gramling TS, Robinson K, Blocker N, Buse MG, et al. Antibody to type I insulinlike growth factor receptor inhibits growth of Wilms' tumor in culture and in athymic mice. Am J Pathol. 1989; 235:961-6. Google Scholar
    • 49. Yun K, Fidler AE, Eccles MR, Reeve AE. Insulin-like growth factor II and WT1 transcript localization in human fetal kidney and Wilms' tumor. Cancer Res. 1993; 53:5166-71. Google Scholar
    • 50. Mundlos S, Pelletier J, Darveau A, Bachmann M, Winterpacht A, Zabel B. Nuclear localization of the protein encoded by the Wilms' tumor gene WT1 in embryonic and adult tissues. Development. 1993; 119:1329-41. Google Scholar
    • 51. Drummond IA, Madden SL, Rohwer-Nutter P, Bell GI, Sukhatme VP, Rauscher FJ 3d. Repression of the insulin-like growth factor II gene by the Wilms tumor suppressor WT1. Science. 1992; 257:674-7. Google Scholar
    • 52. Werner H, Re GG, Drummond IA, Sukhatme VP, Rauscher FJ 3d, Sens DA, et al. Increased expression of the insulin-like growth factor I receptor gene, IGF1R, in Wilms tumor is correlated with modulation of IGF1R promoter activity by the WT1 Wilms tumor gene product. Proc Natl Acad Sci U S A. 1993; 90:5828-32. Google Scholar
    • 53. Zumkeller W, Schwander J, Mitchell CD, Morrell DJ, Schofield PN, Preece MA. Insulin-like growth factor (IGF)-I, -II and IGF binding protein-2 (IGFBP-2) in the plasma of children with Wilms' tumour. Eur J Cancer. 1993; 29A:1973-7. Google Scholar