NIH Conference
1 April 1989

The γ-Aminobutyric Acid A (GABAA) Receptor Complex and Hepatic Encephalopathy: Some Recent Advances

Publication: Annals of Internal Medicine
Volume 110, Number 7
Increased neural inhibition appears to be an important component of the syndrome of hepatic encephalopathy. The pathways subserved by the γ-aminobutyric acid (GABA)-benzodiazepine receptor complex are the principal inhibitory systems in the mammalian brain. Hyperpolarization of neural membranes is accomplished by an increase in transmembrane chloride flux through a GABA-gated chloride channel in the complex. The opening of the chloride channel is induced by the binding of GABA to its receptors, and it is potentiated by barbiturates or benzodiazepines that act at distinct recognition sites on the complex. Involvement of the GABA neurotransmitter system in hepatic encephalopathy is suggested by several findings in animal models of fulminant hepatic failure. For example, hepatic encephalopathy resembles encephalopathies induced by drugs (including benzodiazepines) that potentiate GABAergic neurotransmission. In addition, neurons from animals with hepatic encephalopathy show increased sensitivity to benzodiazepine and GABA receptor agonists. Moreover, these neurons are excited by benzodiazepine receptor antagonists at concentrations that do not affect control neurons. Also, elevated levels of a substance that inhibits radioligand binding to benzodiazepine receptors have been found in cerebrospinal fluid from animals with hepatic encephalopathy. Furthermore, manifestations of hepatic encephalopathy can be ameliorated by benzodiazepine receptor antagonists. The relevance of these findings to hepatic encephalopathy in human beings is supported by clinical observations showing that a benzodiazepine receptor antagonist can lessen the degree of hepatic encephalopathy. These findings suggest that an endogenous substance with benzodiazepine-like properties contributes to the neuropsychiatric manifestations of hepatic encephalopathy by augmenting GABAergic neurotransmission....

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Conn H and Lieberthal M. The Hepatic Coma Syndromes and Lactulose. Baltimore: Williams and Wilkins; 1978.
2.
Sherlock S. Hepatic encephalopathy: acute (fulminant) hepatic failure. In: Diseases of the Liver and Biliary System. 7th ed. Oxford: Blackwell Scientific Publications; 1985:91-116.
3.
Zieve L. Hepatic encephalopathy. In: Schiff L, Schiff ER, eds. Diseases of the Liver. 6th ed. Philadelphia: J.B. Lippincott Co.; 1987:925-48.
4.
Jones E and Gammal S. Hepatic encephalopathy. In: Arias IM, Jakoby WB, Popper H, Schacter D, Shafritz DA, eds. The Liver. Biology and Pathobiology. 2nd ed. New York: Raven Press; 1988:985-1005.
5.
Jones E and Schafer D. Fulminant hepatic failure. In: Zakim D, Boyer TD, eds. Hepatology: A Textbook of Liver Disease. Philadelphia: W.B. Saunders Co.; 1982:415-45.
6.
Bernuan JRueff B, and Benhamou J. Fulminant and subfulminant liver failure: definitions and causes. In: Williams R, ed. Seminars in Liver Disease, v 6, no 2. New York: Thieme, Inc.; 1986:97-106.
7.
Hoyumpa ADesmond PAvant GRoberts R, and Schenker S. Hepatic encephalopathy [Clinical conference]. Gastroenterology. 1979;76:184-95.
8.
Geiger AMagnes JTaylor R, and Viralli M. Effect of blood constituents on uptake of glucose and on metabolic rate of the brain in perfusion experiments. Am J Physiol. 1954;177:138-49.
9.
Roche-Sicot JSicot C, and Peignous M. Acute hepatic encephalopathy in the rat: the effect of cross circulation. Clin Sci Molec Med. 1974;47:609-15.
10.
Sherlock SSummerskill WWhite L, and Phear E. Portalsystemic encephalopathy: neurological complications of liver disease. Lancet 1954;2:453-7.
11.
Soeters Pvan Leeuwen P, and Janssen M. Metabolic generation of ammonia and amino acids in the intestinal wall and the influence of neomycin and lactulose. In: Kleinberger G, Ferenci P, Riederer P, Thaler H, eds. Advances in Hepatic Encephalopathy and Urea Cycle Diseases. Basel: Karger, 1984:147-53.
12.
van Berlo Cde Jonge H, and van den Bogaard A. γ-Aminobutyric acid production in small and large intestine of normal and germ-free Wistar rats: influence of food intake and intestinal flora. Gastroenterology. 1987;93:472-9.
13.
Terblanche JHickman RMiller D, and Saunders S. Animal experience with support systems: are there appropriate animal models of fulminant hepatic necrosis? In: Williams R, Murray-Lyon IM, eds. Artificial Liver Support: Proceedings of an Infernational Symposium on Artificial Support Systems for Acute Hepatic Failure, 2nd and 3rd September, 1974. Tunbridge Wells; England: Pitman Medical; 1975:163-72.
14.
Blitzer BWaggoner J, and Jones E. A model of fulminant hepatic failure in the rabbit. Gastroenterology. 1978;74:664-71.
15.
Schafer DPappas SBrody LJacobs R, and Jones E. Visual evoked potentials in a rabbit model of hepatic encephalopathy: I. Sequential changes and comparisons with drug-induced comas. Gastroenterology. 1984;86:540-5.
16.
Mullen KSchafer DCuchi PRoessle MMaynard T, and Jones E. Evaluation of the suitability of galactosamine-induced fulminant hepatic failure as a model of hepatic encephalopathy in the rat and the rabbit. In: Soeters PB, Wilson JMP, Meijer AJ, Holm E, eds. Advances in Ammonia Metabolism and Hepatic Encephalopathy: Proceedings of the 6th International Symposium on Ammonia. Amsterdam: Excerpta Medica; 1988:205-12.
17.
Traber PGanger D, and Blei A. Brain edema in rabbits with galactosamine-induced fulminant hepatitis: regional differences and effects on intracranial pressure. Gastroenterology. 1986;91:1347-56.
18.
Traber PDelCanto MGanger D, and Blei A. Electron microscopic evaluation of brain edema in rabbits with galactosamine-induced fulminant hepatic failure: ultrastructure and integrity of the blood-brain barrier. Hepatology. 1987;7:1272-7.
19.
Geller DGammal SMullen K, and Jones E. An improved rat model of hepatic encephalopathy due to fulminant hepatic failure: the importance of supportive therapy. In: Soeters PB, Wilson JMP, Meijer AJ, Holm E, eds. Advances in Ammonia Metabolism and Hepatic Encephalopathy. Amsterdam: Excerpta Medica; 1988:213-7.
20.
Mullen KMartin JMendelson WBassett M, and Jones E. Could an endogenous benzodiazepine ligand contribute to hepatic encephalopathy? Lancet 1988;1:457-9.
21.
Butterworth RGiguère JMichand JLavoie J, and Layrargues G. Ammonia: key factor in the pathogenesis of hepatic encepalopathy. Neurochem Pathol. 1987;6:1-12.
22.
Zieve L. Pathogenesis of hepatic encephalopathy. Metabolic Brain Dis. 1987;2:147-65.
23.
James JZiparo VJeppsson B, and Fischer J. Hyperammonemia, plasma amino acid imbalance, and blood-brain amino acid transport: a unified theory of portal systemic encephalopathy. Lancet. 1979;2:772-5.
24.
Haefely W. Actions and interactions of benzodiazepine agonists and antagonists at GABAergic synapses. In: Bowery NG, ed. Actions and Interactions of GABA and Benzodiazepines: a Biological Council Symposium. New York: Raven Press; 1984:263-85.
25.
Koe B. Biochemical effects of antianxiety drugs on brain monoamines. In: Fielding S, Lal H, eds. Anxiolytics. Mt. Kisco: Futura Publishing Co.; 1979:173-95.
26.
Haefely WKulcsar A, and Mohler H. Possible involvement of GABA in the central actions of benzodiazepines. In: Costa E, Greengard P, eds. Mechanism of Action of Benzodiazepines. New York: Raven Press; 1975:131-51.
27.
Möhler H and Okada T. Benzodiazepine receptor: demonstration in the central nervous system. Science. 1977;198:849-51.
28.
Squires R and Braestrup C. Benzodiazepine receptors in rat brain. Nature. 1977;266:732-4.
29.
Tallman JThomas J, and Gallager D. GABAergic modulation of benzodiazepine binding site sensitivity. Nature. 1978;274:384-5.
30.
Asano TSakakibara J, and Ogasawara N. Molecular sizes of photolabeled GABA and benzodiazepine receptors are identical. FEBS Lett. 1983;151:277-80.
31.
Sieghart WMayer A, and Drexler G. Properties of flunitrazepam binding to different benzodiazepine binding proteins. Eur J Pharmacol. 1983;88:291-9.
32.
Deng LRansom R, and Olsen R. [3H] muscimol photolabels the γ-aminobutyric acid receptor binding site peptide subunit distinct from that labeled with benzodiazepines. Biochem Biophys Res Commun. 1986;128:1308-14.
33.
Schofield PDarlison M, and Fujita N. Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature. 1987;328:221-7.
34.
Sweetnam P and Tallman J. Regional difference in brain benzodiazepine receptor carbohydrates. Mol Pharmacol. 1986;29:299-306.
35.
Olsen RWong EStauber G, and King R. Biochemical pharmacology of the gamma-aminobutyric acid receptor/ionophore protein. Fed Proc. 1984;43:2773-8.
36.
Stephenson FWatkins A, and Olsen R. Physicochemical characterization of detergent-solubilized γ-aminobutyric acid and benzodiazepine receptor proteins from bovine brain. Eur J Biochem. 1982;123:291-8.
37.
Ray JMernoff SSangameswaran L, and de Blas A. The stokes radius of the CHAPS-solubilized benzodiazepine receptor complex. Neurochem Res. 1985;10:1221-9.
38.
Nielsen MHonore T, and Braestrup C. Radiation inactivation of brain [35S]t-butylbicyclophosphorothionate binding sites reveals complicated molecular arrangements of the GABA/benzodiazepine receptor chloride channel complex. Biochem Pharmacol. 1985;34:3633-42.
39.
Maksay GNielsen M, and Simonyi M. The enhancement of diazepam and muscimol binding by pentobarbital and (+)-etomidate: size of the molecular arrangement estimated by electron irradiation inactivation of rat cortex. Neurosci Lett. 1986;70:116-20.
40.
Skolnick P and Paul S. Non-benzodiazepine ligands of the benzodiazepine receptor. In: Squires R., ed. GABA and Benzodiazepine Receptors, v 2. Boca Raton: CRC Press; 1988:91-102.
41.
Haefely W. Antagonists of benzodiazepines: functional aspects. In: Biggio G, Costa E, eds. Benzodiazepine Recognition Site Ligands: Biochemistry and Pharmacology. New York: Raven Press; 1983:73-93.
42.
Müller W. The Benzodiazepine Receptor. Cambridge: Cambridge University Press; 1987.
43.
Skolnick P and Paul S. The benzodiazepine/GABA receptor chloride channel complex. In: ISI Atlas of Science: Pharmacology. Philadelphia: Institute for Scientific Information; 1988;2:19-22.
44.
Skolnick PPaul S, and Marangos P. Purines as endogenous ligands of the benzodiazepine receptor. Fed Proc. 1980;39:3050-5.
45.
Barrett J and Witkin J. Benzodiazepine-like effects of inosine on punished behavior in pigeons. Pharmacol Biochem Behav. 1986;24:121-5.
46.
Squires R. GABA receptors regulate the affinities of anions required for specific benzodiazepine binding. In: Costa E, Di Chiara G, Gessa G, eds. GABA and Benzodiazepine Receptors. New York: Raven Press; 1981:129-38.
47.
Skolnick P and Paul S. New concepts in the neurobiology of anxiety. J Clin Psychiatry. 1983;44:(11) 12-20.
48.
Pena CMedina JNoval MPalandini A, and De Roberts E. Isolation and identification in bovine cerebral cortex of n-butyl-β-carboline-3-carboxylate, a potent benzodiazepine binding inhibitor. Proc Natl Acad Sci USA. 1986;83:4952-6.
49.
Novas MWolfman CMedina J, and De Roberts E. Proconvulsant and "anxiogenic" effects of n-butyl-β-carboline-3-carboxylate, an endogenous benzodiazepine binding inhibitor. Pharmacol Biochem Behav. 1988;30:331-6.
50.
Medina JPena C, and Novas M. Acute stress induces an increase in rat cerebral cortex levels of n-butyl-β-carboline-3-carboxylate, an endogenous benzodiazepine binding inhibitor. Neurochem Int. 1987;3:255-9.
51.
Guidotti AForchetti C, and Corda M. Isolation, characterization and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors. Proc Natl Acad Sci USA. 1983;80:3531-5.
52.
Costa EBerkovich A, and Guidotti A. The regulation of GABAergic receptors by a novel family of endogenous peptides. Life Sci. 1987;41:799-803.
53.
Sangameswaran L and de Blas A. Demonstration of benzodiazepine-like molecules in the mammalian brain with a monoclonal antibody to benzodiazepines. Proc Natl Acad Sci USA. 1985;82:5560-4.
54.
Wildmann JMohler HVetter WRanalder USchmidt K, and Maurer R. Diazepam and N-desmethyldiazepam are found in rat brain and adrenal and may be of plant origin. J Neural. Trans. 1987;70:383-98.
55.
Remers WMabilia M, and Hopfinger A. Conformation of complexes between pyrrolo[1,4] benzodiazepines and DNA segments. J Med Chem. 1986;29:2942-503.
56.
Bassett MMullen KSkolnick P, and Jones E. Amelioration of hepatic encephalopathy by pharmacologic antagonism of the GABAA-benzodiazepine receptor complex in a rabbit model of fulminant hepatic failure. Gastroenterology. 1987;93:1069-77.
57.
Olsen R. Drug interactions at the GABA receptor-ionophore complex. Ann Rev Pharmacol Toxicol. 1982;22:245-77.
58.
Squires R. Benzodiazepine receptors. In: Lajtha A, ed. Handbook of Neurochemistry. 2nd ed. v 6. New York: Plenum; 1984:261-306.
59.
Havoundjian HPaul S, and Skolnick P. The permeability of γ-aminobutyric acid-gated chloride channels is decribed by the binding of a "cage" convulsant, f-butylbicyclophosphoro[35S]thionate. Proc Natl Acad Sci USA. 1986;83:9241-4.
60.
Hammond E and Wilder B. Gamma-vinyl GABA: a new antiepileptic drug. Clin Neuropharmacol. 1985;8:1-12.
61.
Dyer RJensen K, and Boyer W. Focal lesions of visual cortex. Effects on visual evoked potentials in rats. Exp Neurol. 1987;95:100-15.
62.
Jones DMullen KRoessle MMaynard T, and Jones E. Hepatic encephalopathy: application of visual evoked responses to test hypotheses of its pathogenesis in rats. J Hepatol 1987;4:118-26.
63.
Zieve LFerenci PRzepczynski DEbner J, and Zimmermann C. A benzodiazepine antagonist does not alter the course of hepatic encephalopathy or neural γ-aminobutyric acid (GABA) binding. Metabol Brain Res. 1987;2:201-5.
64.
Zemon VKaplan E, and Ratliff F. Bicuculline enhances a negative component and diminishes a positive component of the visual evoked cortical potential in the cat. Proc Natl Acad Sci USA. 1980;77:7476-8.
65.
Nakayama K. The relationship of visual evoked potentials to cortical physiology. Ann N Y Acad Sci. 1982;388:21-36.
66.
Basile AGammal SMullen KJones E, and Skolnick P. Differential responsiveness of cerebellar Purkinje neurons to GABA and benzodiazepine receptor ligands in an animal model of hepatic encephalopathy. J Neurosci. 1988;8:2414-21.
67.
Basile A and Dunwiddie T. Norepinephrine elicits both excitatory and inhibitory responses from Purkinje cells in the in vitro rat cerebellar slice. Brain Res., 1984;296:15-25.
68.
Johnston G. Physiological pharmacology of GABA and its antagonists in the vertebrate nervous system. In: Roberts E, Chase TN, Towers DB, eds. GABA in Nervous System Function. New York: Raven Press; 1976:395-411. (Kroc Foundation Series, v 5).
69.
Study R and Barker J. Diazepam and (-)-pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of gamma-aminobutyric acid responses in cultured central neurons. Proc Natl Acad Sci USA. 1981;78:7180-4.
70.
Skolnick P and Paul S. Benzodiazepine receptors in the central nervous system. Int Rev Neurobiol. 1982;23:103-40.
71.
Hamill OBormann J, and Sakmann B. Activation of multiple-conductance state chloride channels in spinal neurons by glycine and GABA. Nature. 1983;305:805-8.
72.
Baraldi M and Zeneroli M. Experimental hepatic encephalopathy: Changes in the binding of gamma-aminobutyric acid. Science. 1982;216:427-9.
73.
Schafer DFowler JMunson PThakur AWaggoner J, and Jones E. Gamma-aminobutyric acid and benzodiazepine receptors in an animal model of fulminant hepatic failure. J Lab Clin Med. 1983;102:870-80.
74.
Bassett MMullen KSkolnick P, and Jones E. GABA and benzodiazepine receptor antagonists ameliorate hepatic encephalopathy in a rabbit model of fulminant hepatic failure [Abstract]. Hepatology. 1985;5:1032.
75.
Skolnick PGoodwin F, and Paul S. A rapid and sensitive radioreceptor assay for benzodiazepine in plasma. Arch Gen Psychiatry. 1979;36:78-80.
76.
Minchin W and Nutt D. Studies on [3H]-diazepam and [3H]ethyl-β-carboline carboxylate binding to rat brain in vivo: 1. Regional variation in displacement. J Neurochem. 1983;41:1507-12.
77.
Wood PLoo PBraunwalder AYokoyama N, and Cheney D. In vitro characterization of benzodiazepine receptor agonists, antagonists, inverse agonists and agonist/antagonists. J Pharmacol Exp Ther. 1984;231:572-6.
78.
Mullen KMartin JMendelson W, and Jones E. Further evidence that hepatic encephalopathy in the galactosamine rabbit model may be mediated by an endogenous benzodiazepine compound. In: Soeters PB, Wilson JMP, Meijer AJ, Holm E, eds. Advances in Ammonia Metabolism and Hepatic Encephalopathy. Amsterdam: Excerpta Medica; 1988:333-7.
79.
Baraldi MZeneroli M, and Ventura E. Supersensitivity of benzodiazepine receptors in hepatic encephalopathy due to fulminant hepatic failure in the rat: reversal by a benzodiazepine antagonist. Clin Sci. 1984;67:167-75.
80.
Mullen KSzauter KGalloway P, and Kaminsky K. CSF of patients with hepatic encephalopathy (HE) contains significant benzodiazepine (BZ) binding activity: correlation with post mortem cortical BZ binding [Abstract]. Hepatology. 1987;7:1103.
81.
Schafer D and Jones E. Hepatic encephalopathy and the γ-aminobutyric-acid neurotransmitter system. Lancet. 1982;1:18-20.
82.
Jones E and Skolnick P. Benzodiazepine receptor ligands and the syndrome of hepatic encephalopathy. In: Popper H, Schaffner F, eds. Progress in Liver Diseases. v 9. Philadelphia: W.B. Saunders; 1989:[In press].
83.
Lavie PPeled RWollman MZomer J, and Tzischinsky O. Agonist-like effects of the benzodiazepine receptor antagonist Ro 15-1788. Neuropsychobiology. 1987;17:72-6.
84.
File S and Pellow S. Intrinsic actions of the benzodiazepine receptor antagonist Ro 15-1788. Psychopharmacology (Berlin). 1986;88:1-11
85.
Bansky GMeier PZiegler WWalser HSchmid M, and Huber M. Reversal of hepatic coma by benzodiazepine antagonist (Ro 15-1788) [Letter]. Lancet. 1985;1:1324-5.
86.
Ferenci PGrimm GMeryn S, and Gangl A. Successful long-term treatment of portal-systemic encephalopathy by the benzodiazepine antagonist flumazenil. Gastroenterology. 1989;96:240-3.
87.
Bansky GMeier PRiederer EWalser HZiegler W, and Schmid M. Effect of benzodiazepine antagonist in hepatic encephalopathy in man [Abstract]. Hepatology. 1987;7:1103.
88.
Grimm GFerenci P, and Katzenschlager R. Improvement of hepatic encephalopathy treated with flumazenil. Lancet 1988;2:1392-4.
89.
Meier R and Gyr K. Treatment of hepatic encephalopathy (HE) with the benzodiazepine antagonist flumazenil: a pilot study. Eur J Anaesthesiol. 1988;supp 2:139-46.
90.
Burke DMitchell KAl Mardini H, and Record C. Reversal of hepatic coma with flumazenil with improvement in visual evoked potentials. Lancet: 1988;2:505-6.
91.
Scollo-Lavizzari G and Steinmann E. Reversal of hepatic coma by benzodiazepine antagonist (Ro 15-1788) [Letter]. Lancet 1985;1:1324.
92.
Sutherland L and Minuk G. Ro 15-1788 and hepatic failure [Letter]. Ann Intern Med. 1988;108:158.
93.
Schafer D. Hepatic coma: studies on the target organ. Gastroenterology. 1987;93:1132-4.

Comments

0 Comments
Sign In to Submit A Comment

Information & Authors

Information

Published In

cover image Annals of Internal Medicine
Annals of Internal Medicine
Volume 110Number 71 April 1989
Pages: 532 - 546

History

Published in issue: 1 April 1989
Published online: 1 December 2008

Keywords

Authors

Affiliations

Anthony S. Basile, PhD

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. For an editable text file, please select Medlars format which will download as a .txt file. Simply select your manager software from the list below and click Download.

For more information or tips please see 'Downloading to a citation manager' in the Help menu.

Format





Download article citation data for:
E. Anthony Jones, Phil Skolnick, Sergio H. Gammal, et al. The γ-Aminobutyric Acid A (GABAA) Receptor Complex and Hepatic Encephalopathy: Some Recent Advances. Ann Intern Med.1989;110:532-546. doi:10.7326/0003-4819-110-7-532

View More

Login Options:
Purchase

You will be redirected to acponline.org to sign-in to Annals to complete your purchase.

Access to EPUBs and PDFs for FREE Annals content requires users to be registered and logged in. A subscription is not required. You can create a free account below or from the following link. You will be redirected to acponline.org to create an account that will provide access to Annals. If you are accessing the Free Annals content via your institution's access, registration is not required.

Create your Free Account

You will be redirected to acponline.org to create an account that will provide access to Annals.

View options

PDF/EPUB

View PDF/EPUB

Related in ACP Journals

Figures

Tables

Media

Share

Share

Copy the content Link

Share on social media