
Low vitamin D levels have been associated with increased mortality, but randomized trials in participants with severe vitamin D deficiencies are lacking. This study used nonlinear Mendelian randomization to assess genetic evidence for the role of low vitamin D status in mortality.
Abstract
Background:
Low vitamin D status is associated with increased mortality, but randomized trials on severely deficient participants are lacking.
Objective:
To assess genetic evidence for the causal role of low vitamin D status in mortality.
Design:
Nonlinear Mendelian randomization analyses.
Setting:
UK Biobank, a large-scale, prospective cohort from England, Scotland, and Wales with participants recruited between March 2006 and July 2010.
Participants:
307 601 unrelated UK Biobank participants of White European ancestry (aged 37 to 73 years at recruitment) with available measurements of 25-hydroxyvitamin D (25-(OH)D) and genetic data.
Measurements:
Genetically predicted 25-(OH)D was estimated using 35 confirmed variants of 25-(OH)D. All-cause and cause-specific mortality (cardiovascular disease [CVD], cancer, and respiratory) were recorded up to June 2020.
Results:
There were 18 700 deaths during the 14 years of follow-up. The association of genetically predicted 25-(OH)D with all-cause mortality was L-shaped (P for nonlinearity < 0.001), and risk for death decreased steeply with increasing concentrations until 50 nmol/L. Evidence for an association was also seen in analyses of mortality from cancer, CVD, and respiratory diseases (P ≤ 0.033 for all outcomes). Odds of all-cause mortality in the genetic analysis were estimated to increase by 25% (odds ratio, 1.25 [95% CI, 1.16 to 1.35]) for participants with a measured 25-(OH)D concentration of 25 nmol/L compared with 50 nmol/L.
Limitations:
Analyses were restricted to a White European population. A genetic approach is best suited to providing proof of principle on causality, whereas the strength of the association is approximate.
Conclusion:
Our study supports a causal relationship between vitamin D deficiency and mortality. Additional research needs to identify strategies that meet the National Academy of Medicine's guideline of greater than 50 nmol/L and that reduce the premature risk for death associated with low vitamin D levels.
Primary Funding Source:
National Health and Medical Research Council.
References
- 1.
Cooper C ,Harvey NC ,Bishop NJ ,et al ;MAVIDOS Study Group . Maternal gestational vitamin D supplementation and offspring bone health (MAVIDOS): a multicentre, double-blind, randomised placebo-controlled trial. Lancet Diabetes Endocrinol. 2016;4:393-402. [PMID: 26944421] doi:10.1016/S2213-8587(16)00044-9 CrossrefMedlineGoogle Scholar - 2.
Bolland MJ ,Grey A ,Avenell A . Assessment of research waste part 2: wrong study populations- an exemplar of baseline vitamin D status of participants in trials of vitamin D supplementation. BMC Med Res Methodol. 2018;18:101. [PMID: 30285729] doi:10.1186/s12874-018-0555-1 CrossrefMedlineGoogle Scholar - 3.
Wang H ,Chen W ,Li D ,et al . Vitamin D and chronic diseases. Aging Dis. 2017;8:346-353. [PMID: 28580189] doi:10.14336/AD.2016.1021 CrossrefMedlineGoogle Scholar - 4.
Wang Y ,Zhu J ,DeLuca HF . Where is the vitamin D receptor. Arch Biochem Biophys. 2012;523:123-33. [PMID: 22503810] doi:10.1016/j.abb.2012.04.001 CrossrefMedlineGoogle Scholar - 5.
Zhang Y ,Fang F ,Tang J ,et al . Association between vitamin D supplementation and mortality: systematic review and meta-analysis. BMJ. 2019;366:l4673. [PMID: 31405892] doi:10.1136/bmj.l4673 CrossrefMedlineGoogle Scholar - 6.
Bjelakovic G ,Gluud LL ,Nikolova D ,et al . Vitamin D supplementation for prevention of cancer in adults. Cochrane Database Syst Rev. 2014:CD007469. [PMID: 24953955] doi:10.1002/14651858.CD007469.pub2 CrossrefMedlineGoogle Scholar - 7.
Bolland MJ ,Grey A ,Gamble GD ,et al . The effect of vitamin D supplementation on skeletal, vascular, or cancer outcomes: a trial sequential meta-analysis. Lancet Diabetes Endocrinol. 2014;2:307-320. [PMID: 24703049] doi:10.1016/S2213-8587(13)70212-2 CrossrefMedlineGoogle Scholar - 8.
Manson JE ,Cook NR ,Lee IM ,et al ;VITAL Research Group . Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2019;380:33-44. [PMID: 30415629] doi:10.1056/NEJMoa1809944 CrossrefMedlineGoogle Scholar - 9.
Camargo CA Jr, Martineau AR . Vitamin D to prevent COVID-19: recommendations for the design of clinical trials. FEBS J. 2020;287:3689-3692. [PMID: 33448695] doi:10.1111/febs.15534 CrossrefMedlineGoogle Scholar - 10.
Davies NM ,Holmes MV ,Davey Smith G . Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;362:k601. [PMID: 30002074] doi:10.1136/bmj.k601 CrossrefMedlineGoogle Scholar - 11.
Staley JR ,Burgess S . Semiparametric methods for estimation of a nonlinear exposure-outcome relationship using instrumental variables with application to Mendelian randomization. Genet Epidemiol. 2017;41:341-352. [PMID: 28317167] doi:10.1002/gepi.22041 CrossrefMedlineGoogle Scholar - 12.
Afzal S ,Brøndum-Jacobsen P ,Bojesen SE ,et al . Genetically low vitamin D concentrations and increased mortality: Mendelian randomisation analysis in three large cohorts. BMJ. 2014;349:g6330. [PMID: 25406188] doi:10.1136/bmj.g6330 CrossrefMedlineGoogle Scholar - 13.
Ong JS ,Gharahkhani P ,An J ,et al . Vitamin D and overall cancer risk and cancer mortality: a Mendelian randomization study. Hum Mol Genet. 2018;27:4315-4322. [PMID: 30508204] doi:10.1093/hmg/ddy307 CrossrefMedlineGoogle Scholar - 14.
Huang T ,Afzal S ,Yu C ,et al ;China Kadoorie Biobank Collaborative Group . Vitamin D and cause-specific vascular disease and mortality: a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults. BMC Med. 2019;17:160. [PMID: 31466528] doi:10.1186/s12916-019-1401-y CrossrefMedlineGoogle Scholar - 15.
Meng X ,Li X ,Timofeeva MN ,et al . Phenome-wide Mendelian-randomization study of genetically determined vitamin D on multiple health outcomes using the UK Biobank study. Int J Epidemiol. 2019;48:1425-1434. [PMID: 31518429] doi:10.1093/ije/dyz182 CrossrefMedlineGoogle Scholar - 16.
Emerging Risk Factors Collaboration/EPIC-CVD/Vitamin D Studies Collaboration . Estimating dose-response relationships for vitamin D with coronary heart disease, stroke, and all-cause mortality: observational and Mendelian randomisation analyses. Lancet Diabetes Endocrinol. 2021;9:837-846. [PMID: 34717822] doi:10.1016/S2213-8587(21)00263-1 CrossrefMedlineGoogle Scholar - 17.
Sudlow C ,Gallacher J ,Allen N ,et al . UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779. [PMID: 25826379] doi:10.1371/journal.pmed.1001779 CrossrefMedlineGoogle Scholar - 18. UK Biobank. Mortality data: linkage to death registries, version 2.0. June 2020. Accessed at https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/DeathLinkage.pdf on 17 March 2021. Google Scholar
- 19.
Steindel SJ . International Classification of Diseases, 10th Edition, Clinical Modification and procedure coding system: descriptive overview of the next generation HIPAA code sets. J Am Med Inform Assoc. 2010;17:274-82. [PMID: 20442144] doi:10.1136/jamia.2009.001230 CrossrefMedlineGoogle Scholar - 20. Townsend P, Phillimore P, Beattie A. Health and Deprivation: Inequality and the North. Routledge; 1988. Google Scholar
- 21.
Revez JA ,Lin T ,Qiao Z ,et al . Genome-wide association study identifies 143 loci associated with 25 hydroxyvitamin D concentration. Nat Commun. 2020;11:1647. [PMID: 32242144] doi:10.1038/s41467-020-15421-7 CrossrefMedlineGoogle Scholar - 22.
Jiang X ,O’Reilly PF ,Aschard H ,et al . Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nat Commun. 2018;9:260. [PMID: 29343764] doi:10.1038/s41467-017-02662-2 CrossrefMedlineGoogle Scholar - 23.
Royston P ,Ambler G ,Sauerbrei W . The use of fractional polynomials to model continuous risk variables in epidemiology. Int J Epidemiol. 1999;28:964-74. [PMID: 10597998] CrossrefMedlineGoogle Scholar - 24.
Burgess S ,Davey Smith G ,Davies NM ,et al . Guidelines for performing Mendelian randomization investigations. Wellcome Open Res. 2019;4:186. [PMID: 32760811] doi:10.12688/wellcomeopenres.15555.2 CrossrefMedlineGoogle Scholar - 25.
Burgess S ,Gill D . Genetic evidence for vitamin D and cardiovascular disease: choice of variants is critical [Editorial]. Eur Heart J. 2022;43:1740-1742. [PMID: 34972215] doi:10.1093/eurheartj/ehab870 CrossrefMedlineGoogle Scholar - 26.
Kamat MA ,Blackshaw JA ,Young R ,et al . PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics. 2019;35:4851-4853. [PMID: 31233103] doi:10.1093/bioinformatics/btz469 CrossrefMedlineGoogle Scholar - 27. Ross AC, Taylor CL, Yaktine AL, et al, eds; Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D. National Academies Pr; 2011. Google Scholar
- 28.
Munasinghe LL ,Yuan Y ,Willows ND ,et al . Vitamin D deficiency and sufficiency among Canadian children residing at high latitude following the revision of the RDA of vitamin D intake in 2010. Br J Nutr. 2017;117:457-465. [PMID: 28245892] doi:10.1017/S0007114517000320 CrossrefMedlineGoogle Scholar - 29.
Raulio S ,Erlund I ,Männistö S ,et al . Successful nutrition policy: improvement of vitamin D intake and status in Finnish adults over the last decade. Eur J Public Health. 2017;27:268-273. [PMID: 28339536] doi:10.1093/eurpub/ckw154 CrossrefMedlineGoogle Scholar - 30.
Chacham S ,Rajput S ,Gurnurkar S ,et al . Prevalence of vitamin D deficiency among infants in northern India: a hospital based prospective study. Cureus. 2020;12:e11353. [PMID: 33304688] doi:10.7759/cureus.11353 CrossrefMedlineGoogle Scholar - 31.
Amrein K ,Scherkl M ,Hoffmann M ,et al . Vitamin D deficiency 2.0: an update on the current status worldwide. Eur J Clin Nutr. 2020;74:1498-1513. [PMID: 31959942] doi:10.1038/s41430-020-0558-y CrossrefMedlineGoogle Scholar - 32.
Sutherland JP ,Zhou A ,Leach MJ ,et al . Differences and determinants of vitamin D deficiency among UK Biobank participants: a cross-ethnic and socioeconomic study. Clin Nutr. 2021;40:3436-3447. [PMID: 33309415] doi:10.1016/j.clnu.2020.11.019 CrossrefMedlineGoogle Scholar - 33.
Lan SH ,Lai CC ,Chang SP ,et al . Vitamin D supplementation and the outcomes of critically ill adult patients: a systematic review and meta-analysis of randomized controlled trials. Sci Rep. 2020;10:14261. [PMID: 32868842] doi:10.1038/s41598-020-71271-9 CrossrefMedlineGoogle Scholar - 34.
Hasanloei MAV ,Rahimlou M ,Eivazloo A ,et al . Effect of oral versus intramuscular vitamin D replacement on oxidative stress and outcomes in traumatic mechanical ventilated patients admitted to intensive care unit. Nutr Clin Pract. 2020;35:548-558. [PMID: 31486158] doi:10.1002/ncp.10404 CrossrefMedlineGoogle Scholar - 35.
Amrein K ,Schnedl C ,Holl A ,et al . Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the VITdAL-ICU randomized clinical trial. JAMA. 2014;312:1520-30. [PMID: 25268295] doi:10.1001/jama.2014.13204 CrossrefMedlineGoogle Scholar - 36.
Vieth R . How to optimize vitamin D supplementation to prevent cancer, based on cellular adaptation and hydroxylase enzymology. Anticancer Res. 2009;29:3675-84. [PMID: 19667164] MedlineGoogle Scholar - 37.
Carlberg C . Genome-wide (over)view on the actions of vitamin D. Front Physiol. 2014;5:167. [PMID: 24808867] doi:10.3389/fphys.2014.00167 CrossrefMedlineGoogle Scholar - 38.
Al Mheid I ,Quyyumi AA . Vitamin D and cardiovascular disease: controversy unresolved. J Am Coll Cardiol. 2017;70:89-100. [PMID: 28662812] doi:10.1016/j.jacc.2017.05.031 CrossrefMedlineGoogle Scholar - 39.
Martineau AR ,Jolliffe DA ,Hooper RL ,et al . Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. [PMID: 28202713] doi:10.1136/bmj.i6583 CrossrefMedlineGoogle Scholar - 40.
Carlberg C ,Muñoz A . An update on vitamin D signaling and cancer. Semin Cancer Biol. 2022;79:217-230. [PMID: 32485310] doi:10.1016/j.semcancer.2020.05.018 CrossrefMedlineGoogle Scholar - 41.
Chakraborti CK . Vitamin D as a promising anticancer agent. Indian J Pharmacol. 2011;43:113-20. [PMID: 21572642] doi:10.4103/0253-7613.77335 CrossrefMedlineGoogle Scholar - 42.
Batty GD ,Gale CR ,Kivimäki M ,et al . Comparison of risk factor associations in UK Biobank against representative, general population based studies with conventional response rates: prospective cohort study and individual participant meta-analysis. BMJ. 2020;368:m131. [PMID: 32051121] doi:10.1136/bmj.m131 CrossrefMedlineGoogle Scholar - 43.
Gkatzionis A ,Burgess S . Contextualizing selection bias in Mendelian randomization: how bad is it likely to be. Int J Epidemiol. 2019;48:691-701. [PMID: 30325422] doi:10.1093/ije/dyy202 CrossrefMedlineGoogle Scholar
Author, Article, and Disclosure Information
Joshua P. Sutherland,
Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia (J.P.S.)
Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia (A.Z., E.H.).
Acknowledgment: The authors thank all UK Biobank participants involved, as well as Dr. Anwar Mulugeta (University of South Australia) for support in data management.
Financial Support: By grant 11123603 from the National Health and Medical Research Council. Mr. Sutherland's studentship is funded by an Australian Research Training Program Scholarship.
Disclosures: Disclosures can be viewed at www.acponline.org/authors/icmje/ConflictOfInterestForms.do?msNum=M21-3324.
Reproducible Research Statement: Study protocol: Not available. Data set and statistical code: This research has been conducted using the UK Biobank resource under application 20175. All data and code will be available to approved users on application to the UK Biobank.
Corresponding Author: Elina Hyppönen, PhD, Australian Centre for Precision Health, University of South Australia, c/o South Australian Health and Medical Research Institute, GPO Box 2471, Adelaide, SA 5001, Australia; e-mail, Elina.
Author Contributions: Conception and design: E. Hyppönen.
Analysis and interpretation of the data: E. Hyppönen, J.P. Sutherland, A. Zhou.
Drafting of the article: E. Hyppönen, J.P. Sutherland, A. Zhou.
Critical revision for important intellectual content: E. Hyppönen, A. Zhou.
Final approval of the article: E. Hyppönen, J.P. Sutherland, A. Zhou.
Provision of study materials or patients: E. Hyppönen.
Statistical expertise: E. Hyppönen, A. Zhou.
Obtaining of funding: E. Hyppönen.
Administrative, technical, or logistic support: E. Hyppönen, J.P. Sutherland.
Collection and assembly of data: J.P. Sutherland, A. Zhou.
This article was published at Annals.org on 25 October 2022.
Submit a Comment
Contributors must reveal any conflict of interest. Comments are moderated. Please see our information for authorsregarding comments on an Annals publication.
*All comments submitted after October 1, 2021 and selected for publication will be published online only.