Original Research
5 June 2018

Clinical Implications of Revised Pooled Cohort Equations for Estimating Atherosclerotic Cardiovascular Disease Risk

Publication: Annals of Internal Medicine
Volume 169, Number 1

Abstract

Background:

The 2013 pooled cohort equations (PCEs) are central in prevention guidelines for cardiovascular disease (CVD) but can misestimate CVD risk.

Objective:

To improve the clinical accuracy of CVD risk prediction by revising the 2013 PCEs using newer data and statistical methods.

Design:

Derivation and validation of risk equations.

Setting:

Population-based.

Participants:

26 689 adults aged 40 to 79 years without prior CVD from 6 U.S. cohorts.

Measurements:

Nonfatal myocardial infarction, death from coronary heart disease, or fatal or nonfatal stroke.

Results:

The 2013 PCEs overestimated 10-year risk for atherosclerotic CVD by an average of 20% across risk groups. Misestimation of risk was particularly prominent among black adults, of whom 3.9 million (33% of eligible black persons) had extreme risk estimates (<70% or >250% those of white adults with otherwise-identical risk factor values). Updating these equations improved accuracy among all race and sex subgroups. Approximately 11.8 million U.S. adults previously labeled high-risk (10-year risk ≥7.5%) by the 2013 PCEs would be relabeled lower-risk by the updated equations.

Limitations:

Updating the 2013 PCEs with data from modern cohorts reduced the number of persons considered to be at high risk. Clinicians and patients should consider the potential benefits and harms of reducing the number of persons recommended aspirin, blood pressure, or statin therapy. Our findings also indicate that risk equations will generally become outdated over time and require routine updating.

Conclusion:

Revised PCEs can improve the accuracy of CVD risk estimates.

Primary Funding Source:

National Institutes of Health.

Get full access to this article

View all available purchase options and get full access to this article.

Supplemental Material

Supplement. Supplementary Material

References

1.
Stone NJRobinson JGLichtenstein AHBaireyMerz CNBlum CBEckel RHet alAmerican College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:S1-45. [PMID: 24222016]  doi: 10.1161/01.cir.0000437738.63853.7a
2.
Bibbins-Domingo KU.S. Preventive Services Task Force. Aspirin use for the primary prevention of cardiovascular disease and colorectal cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2016;164:836-45. [PMID: 27064677].  doi: 10.7326/M16-0577
3.
Whelton PKCarey RMAronow WSCasey DE JrCollins KJDennison Himmelfarb Cet al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017. [PMID: 29146535]  doi: 10.1016/j.jacc.2017.11.006
4.
Ridker PMCook NR. Statins: new American guidelines for prevention of cardiovascular disease. Lancet. 2013;382:1762-5. [PMID: 24268611]  doi: 10.1016/S0140-6736(13)62388-0
5.
Muntner PColantonio LDCushman MGoff DC JrHoward GHoward VJet al. Validation of the atherosclerotic cardiovascular disease pooled cohort risk equations. JAMA. 2014;311:1406-15. [PMID: 24682252]  doi: 10.1001/jama.2014.2630
6.
DeFilippis APYoung RCarrubba CJMcEvoy JWBudoff MJBlumenthal RSet al. An analysis of calibration and discrimination among multiple cardiovascular risk scores in a modern multiethnic cohort. Ann Intern Med. 2015;162:266-75. [PMID: 25686167].  doi: 10.7326/M14-1281
7.
DeFilippis APYoung RMcEvoy JWMichos EDSandfort VKronmal RAet al. Risk score overestimation: the impact of individual cardiovascular risk factors and preventive therapies on the performance of the American Heart Association-American College of Cardiology-Atherosclerotic Cardiovascular Disease risk score in a modern multi-ethnic cohort. Eur Heart J. 2017;38:598-608. [PMID: 27436865]  doi: 10.1093/eurheartj/ehw301
8.
Cook NRRidker PM. Calibration of the pooled cohort equations for atherosclerotic cardiovascular disease: an update. Ann Intern Med. 2016;165:786-94. [PMID: 27723890].  doi: 10.7326/M16-1739
9.
Rana JSTabada GHSolomon MDLo JCJaffe MGSung SHet al. Accuracy of the atherosclerotic cardiovascular risk equation in a large contemporary, multiethnic population. J Am Coll Cardiol. 2016;67:2118-30. [PMID: 27151343]  doi: 10.1016/j.jacc.2016.02.055
10.
Cook NRRidker PM. Further insight into the cardiovascular risk calculator: the roles of statins, revascularizations, and underascertainment in the Women's Health Study. JAMA Intern Med. 2014;174:1964-71. [PMID: 25285455]  doi: 10.1001/jamainternmed.2014.5336
11.
Goff DC JrLloyd-Jones DMBennett GCoady SD'Agostino RBGibbons Ret alAmerican College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129 Suppl S49-73. [PMID: 24222018]  doi: 10.1161/01.cir.0000437741.48606.98
12.
Mozaffarian DBenjamin EJGo ASArnett DKBlaha MJCushman Met alWriting Group Members. Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation. 2016;133:e38-360. [PMID: 26673558]  doi: 10.1161/CIR.0000000000000350
13.
Hastie TTibshirani RFriedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. New York: Springer; 2011.
14.
Basu S. Modeling Public Health and Healthcare Systems. 1st ed. New York: Oxford Univ Pr; 2017.
15.
Hosmer DW JrLemeshow SSturdivant RX. Applied Logistic Regression. Vol. 398. New York: J Wiley; 2013.
16.
Hiller LMarshall ADunn J. Assessing violations of the proportional hazards assumption in Cox regression: does the chosen method matter? Trials. 2015;16 Suppl 2 P134.
17.
Miladinovic BKumar AMhaskar RKim SSchonwetter RDjulbegovic B. A flexible alternative to the Cox proportional hazards model for assessing the prognostic accuracy of hospice patient survival. PLoS One. 2012;7:e47804. [PMID: 23082220]  doi: 10.1371/journal.pone.0047804
18.
Royston PAltman DG. External validation of a Cox prognostic model: principles and methods. BMC Med Res Methodol. 2013;13:33. [PMID: 23496923]  doi: 10.1186/1471-2288-13-33
19.
Friedman JHastie TTibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33:1-22. [PMID: 20808728]
20.
Tibshirani RBien JFriedman JHastie TSimon NTaylor Jet al. Strong rules for discarding predictors in lasso-type problems. J R Stat Soc Series B Stat Methodol. 2012;74:245-66. [PMID: 25506256]
21.
Borucka J. Extensions of Cox model for non-proportional hazards purpose. Ekonometria. 2014;3:85-101.
22.
Kohavi R. Proceedings of the 14th International Joint Conference on Artificial Intelligence. Vol. 2. San Francisco: Morgan Kaufmann; 1995:1137-43.
23.
Cooper HM. Research Synthesis and Meta-analysis. 5th ed. Los Angeles: Sage; 2016.
24.
Collins GSReitsma JBAltman DGMoons KG. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med. 2015;162:55-63. [PMID: 25560714].  doi: 10.7326/M14-0697
25.
Eddy DMHollingworth WCaro JJTsevat JMcDonald KMWong JBISPOR-SMDM Modeling Good Research Practices Task Force. Model transparency and validation: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-7. Med Decis Making. 2012;32:733-43. [PMID: 22990088]
26.
Jung KShah NH. Implications of non-stationarity on predictive modeling using EHRs. J Biomed Inform. 2015;58:168-74. [PMID: 26483171]  doi: 10.1016/j.jbi.2015.10.006
27.
Demler OVPaynter NPCook NR. Tests of calibration and goodness-of-fit in the survival setting. Stat Med. 2015;34:1659-80. [PMID: 25684707]  doi: 10.1002/sim.6428
28.
Harrell FE JrLee KLMark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15:361-87. [PMID: 8668867]
29.
Pepe MSFan JFeng ZGerds THilden J. The net reclassification index (NRI): a misleading measure of prediction improvement even with independent test data sets. Stat Biosci. 2015;7:282-95. [PMID: 26504496]
30.
Hilden JGerds TA. A note on the evaluation of novel biomarkers: do not rely on integrated discrimination improvement and net reclassification index. Stat Med. 2014;33:3405-14. [PMID: 23553436]  doi: 10.1002/sim.5804

Information & Authors

Information

Published In

cover image Annals of Internal Medicine
Annals of Internal Medicine
Volume 169Number 13 July 2018
Pages: 20 - 29

History

Published online: 5 June 2018
Published in issue: 3 July 2018

Keywords

Authors

Affiliations

Steve Yadlowsky, MS
Stanford University, Stanford, California (S.Y.)
Rodney A. Hayward, MD
University of Michigan and Center for Clinical Management Research at Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan (R.A.H., J.B.S.)
Jeremy B. Sussman, MD, MS
University of Michigan and Center for Clinical Management Research at Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan (R.A.H., J.B.S.)
Robyn L. McClelland, PhD
University of Washington, Seattle, Washington (R.L.M.)
Yuan-I Min, PhD
University of Mississippi Medical Center and Jackson Heart Study, Jackson, Mississippi (Y.M.)
Sanjay Basu, MD, PhD
Center for Primary Care and Outcomes Research and Center for Population Health Sciences at Stanford University, Stanford, California, and Center for Primary Care at Harvard Medical School, Boston, Massachusetts (S.B.)
Disclaimer: The content is solely the responsibility of the authors and does not necessarily represent the official views or opinions of the National Institutes of Health; National Heart, Lung, and Blood Institute (NHLBI); CHS; CARDIA; or FHS. This manuscript has been reviewed by MESA and JHS.
Acknowledgment: The authors thank Lu Tian, John Ioannidis, John Duchi, and Doug Owens for their input and reviews of the methods and manuscript. This manuscript was prepared using research materials from ARIC, CHS, CARDIA, and FHS obtained from the NHLBI Biologic Specimen and Data Repository Information Coordinating Center.
Financial Support: By awards DP2MD010478 and U54MD010724 from the National Institute on Minority Health and Health Disparities of the National Institutes of Health and award K08HL121056 from the NHLBI of the National Institutes of Health. Mr. Yadlowsky is supported by the Stanford University Graduate Fellowship. Dr. Hayward is supported by grant P30DK092926 (Michigan Center for Diabetes Translational Research Methods Core) from the National Institute of Diabetes and Digestive and Kidney Diseases. The JHS is supported by contracts HHSN268201300046C, HHSN268201300047C, HHSN268201300048C, HHSN268201300049C, and HHSN268201300050C from the NHLBI and the National Institute on Minority Health and Health Disparities, with additional support from the National Institute of Biomedical Imaging and Bioengineering. MESA is supported by contracts HHSN268201500003I, N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, and N01-HC-95169 from the NHLBI and grants UL1-TR-000040, UL1-TR-001079, and UL1-TR-001420 from the National Center for Advancing Translational Sciences.
Disclosures: Dr. Sussman reports grants from the U.S. Department of Veterans Affairs during the conduct of the study. Dr. McClelland reports grants from the NHLBI during the conduct of the study. Authors not named here have disclosed no conflicts of interest. Disclosures can also be viewed at www.acponline.org/authors/icmje/ConflictOfInterestForms.do?msNum=M17-3011.
Editors' Disclosures: Christine Laine, MD, MPH, Editor in Chief, reports that her spouse has stock options/holdings with Targeted Diagnostics and Therapeutics. Darren B. Taichman, MD, PhD, Executive Editor, reports that he has no financial relationships or interests to disclose. Cynthia D. Mulrow, MD, MSc, Senior Deputy Editor, reports that she has no relationships or interests to disclose. Deborah Cotton, MD, MPH, Deputy Editor, reports that she has no financial relationships or interest to disclose. Jaya K. Rao, MD, MHS, Deputy Editor, reports that she has stock holdings/options in Eli Lilly and Pfizer. Sankey V. Williams, MD, Deputy Editor, reports that he has no financial relationships or interests to disclose. Catharine B. Stack, PhD, MS, Deputy Editor for Statistics, reports that she has stock holdings in Pfizer and Johnson & Johnson.
Reproducible Research Statement: Study protocol: Not applicable. Statistical code: Available at https://github.com/sanjaybasu/revised-pooled-ascvd, with accompanying online calculator available at https://sanjaybasu.shinyapps.io/ascvd. Data set: Available at https://biolincc.nhlbi.nih.gov.
Corresponding Author: Sanjay Basu, MD, PhD, Encina Commons, 117 Crothers Way, Stanford University, Stanford, CA 94305-6055; e-mail, [email protected].
Current Author Addresses: Mr. Yadlowsky: Stanford University Center for Primary Care and Outcomes Research, 616 Serra Street, Room E012, Stanford, CA 94305.
Dr. Hayward: VA Ann Arbor Health Care, 2800 Plymouth Road, Building 14, G100-36, Ann Arbor, MI 48109.
Dr. Sussman: VA Ann Arbor Health Care, 2800 Plymouth Road, Building 16, Room 335E, Ann Arbor, MI 48109.
Dr. McClelland: University of Washington, 6200 NE 74th Street, Seattle, WA 98115.
Dr. Min: University of Mississippi Medical Center, 350 West Woodrow Wilson Avenue, Suite 701, Jackson, MS 39213.
Dr. Basu: Encina Commons, 117 Crothers Way, Stanford University, Stanford, CA 94305-6055.
Author Contributions: Conception and design: S. Yadlowsky, J.B. Sussman, S. Basu.
Analysis and interpretation of the data: S. Yadlowsky, R.A. Hayward, R.L. McClelland, Y.I. Min, S. Basu.
Drafting of the article: S. Yadlowsky, S. Basu.
Critical revision of the article for important intellectual content: S. Yadlowsky, R.A. Hayward, J.B. Sussman, R.L. McClelland.
Final approval of the article: S. Yadlowsky, R.A. Hayward, J.B. Sussman, R.L. McClelland, Y.I. Min, S. Basu.
Provision of study materials or patients: Y.I. Min.
Statistical expertise: S. Yadlowsky, R.A. Hayward, J.B. Sussman, R.L. McClelland, Y.I. Min, S. Basu.
Obtaining of funding: S. Basu.
Administrative, technical, or logistic support: S. Basu.
Collection and assembly of data: Y.I. Min, S. Basu.
This article was published at Annals.org on 5 June 2018.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. For an editable text file, please select Medlars format which will download as a .txt file. Simply select your manager software from the list below and click Download.

For more information or tips please see 'Downloading to a citation manager' in the Help menu.

Format





Download article citation data for:
Steve Yadlowsky, Rodney A. Hayward, Jeremy B. Sussman, et al. Clinical Implications of Revised Pooled Cohort Equations for Estimating Atherosclerotic Cardiovascular Disease Risk. Ann Intern Med.2018;169:20-29. [Epub 5 June 2018]. doi:10.7326/M17-3011

View More

Get Access

Login Options:
Purchase

You will be redirected to acponline.org to sign-in to Annals to complete your purchase.

Create your Free Account

You will be redirected to acponline.org to create an account that will provide access to Annals.

View options

PDF/ePub

View PDF/ePub

Related in ACP Journals

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media