Abstract
Background:
Mosquito-borne and sexually transmitted Zika virus has become widespread across Central and South America and the Caribbean. Many Zika vaccine candidates are under active development.
Objective:
To quantify the effect of Zika vaccine prioritization of females aged 9 to 49 years, followed by males aged 9 to 49 years, on incidence of prenatal Zika infections.
Design:
A compartmental model of Zika transmission between mosquitoes and humans was developed and calibrated to empirical estimates of country-specific mosquito density. Mosquitoes were stratified into susceptible, exposed, and infected groups; humans were stratified into susceptible, exposed, infected, recovered, and vaccinated groups. Age-specific fertility rates, Zika sexual transmission, and country-specific demographics were incorporated.
Setting:
34 countries and territories in the Americas with documented Zika outbreaks.
Target Population:
Males and females aged 9 to 49 years.
Intervention:
Age- and sex-targeted immunization using a Zika vaccine with 75% efficacy.
Measurements:
Annual prenatal Zika infections.
Results:
For a base-case vaccine efficacy of 75% and vaccination coverage of 90%, immunizing females aged 9 to 49 years (the World Health Organization target population) would reduce the incidence of prenatal infections by at least 94%, depending on the country-specific Zika attack rate. In regions where an outbreak is not expected for at least 10 years, vaccination of women aged 15 to 29 years is more efficient than that of women aged 30 years or older.
Limitation:
Population-level modeling may not capture all local and neighborhood-level heterogeneity in mosquito abundance or Zika incidence.
Conclusion:
A Zika vaccine of moderate to high efficacy may virtually eliminate prenatal infections through a combination of direct protection and transmission reduction. Efficiency of age-specific targeting of Zika vaccination depends on the timing of future outbreaks.
Primary Funding Source:
National Institutes of Health.
References
- 1.
Faria NR ,Azevedo RDSDS ,Kraemer MUG ,Souza R ,Cunha MS ,Hill SC ,et al . Zika virus in the Americas: early epidemiological and genetic findings. Science. 2016;352:345-9. [PMID: 27013429] doi:10.1126/science.aaf5036 CrossrefMedlineGoogle Scholar - 2.
Cauchemez S ,Besnard M ,Bompard P ,Dub T ,Guillemette-Artur P ,Eyrolle-Guignot D ,et al . Association between Zika virus and microcephaly in French Polynesia, 2013-15: a retrospective study. Lancet. 2016;387:2125-32. [PMID: 26993883] doi:10.1016/S0140-6736(16)00651-6 CrossrefMedlineGoogle Scholar - 3.
Cao-Lormeau VM ,Blake A ,Mons S ,Lastere S ,Roche C ,Vanhomwegen J ,et al . Guillain-Barré syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet. 2016;387:1531-9. [PMID: 26948433] doi:10.1016/S0140-6736(16)00562-6 CrossrefMedlineGoogle Scholar - 4.
de Paula Freitas B ,de Oliveira Dias JR ,Prazeres J ,Sacramento GA ,Ko AI ,Maia M ,et al . Ocular findings in infants with microcephaly associated with presumed Zika virus congenital infection in Salvador, Brazil. JAMA Ophthalmol. 2016;134:529-35. [PMID: 26865554] doi:10.1001/jamaophthalmol.2016.0267 CrossrefMedlineGoogle Scholar - 5.
Sarno M ,Sacramento GA ,Khouri R ,do Rosário MS ,Costa F ,Archanjo G ,et al . Zika virus infection and stillbirths: a case of hydrops fetalis, hydranencephaly and fetal demise. PLoS Negl Trop Dis. 2016;10:e0004517. [PMID: 26914330] doi:10.1371/journal.pntd.0004517 CrossrefMedlineGoogle Scholar - 6.
Ikejezie J ,Shapiro CN ,Kim J ,Chiu M ,Almiron M ,Ugarte C ,et al . Zika virus transmission—region of the Americas, May 15, 2015-December 15, 2016. MMWR Morb Mortal Wkly Rep. 2017;66:329-34. [PMID: 28358795] doi:10.15585/mmwr.mm6612a4 CrossrefMedlineGoogle Scholar - 7.
Gubler DJ . The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? Comp Immunol Microbiol Infect Dis. 2004;27:319-30. [PMID: 15225982] CrossrefMedlineGoogle Scholar - 8.
Lyon J . Vaccines protect fetus from Zika. JAMA. 2017;318:689. [PMID: 28829857] doi:10.1001/jama.2017.11200 CrossrefMedlineGoogle Scholar - 9.
Barouch DH ,Thomas SJ ,Michael NL . Prospects for a Zika virus vaccine. Immunity. 2017;46:176-82. [PMID: 28228277] doi:10.1016/j.immuni.2017.02.005 CrossrefMedlineGoogle Scholar - 10.
Thomas SJ ,L'Azou M ,Barrett AD ,Jackson NA . Fast-track Zika vaccine development—is it possible? N Engl J Med. 2016;375:1212-6. [PMID: 27682032] doi:10.1056/NEJMp1609300 CrossrefMedlineGoogle Scholar - 11.
Vannice KS ,Giersing BK ,Kaslow DC ,Griffiths E ,Meyer H ,Barrett A ,et al . Meeting report: WHO consultation on considerations for regulatory expectations of Zika virus vaccines for use during an emergency. Vaccine. 2016. [PMID: 27916410] doi:10.1016/j.vaccine.2016.10.034 CrossrefMedlineGoogle Scholar - 12.
Perkins TA ,Siraj AS ,Ruktanonchai CW ,Kraemer MU ,Tatem AJ . Model-based projections of Zika virus infections in childbearing women in the Americas. Nat Microbiol. 2016;1:16126. [PMID: 27562260] doi:10.1038/nmicrobiol.2016.126 CrossrefMedlineGoogle Scholar - 13.
Ferguson NM ,Cucunubá ZM ,Dorigatti I ,Nedjati-Gilani GL ,Donnelly CA ,Basáñez MG ,et al . Epidemiology. Countering the Zika epidemic in Latin America. Science. 2016;353:353-4. [PMID: 27417493] doi:10.1126/science.aag0219 CrossrefMedlineGoogle Scholar - 14.
Althouse BM ,Vasilakis N ,Sall AA ,Diallo M ,Weaver SC ,Hanley KA . Potential for Zika virus to establish a sylvatic transmission cycle in the Americas. PLoS Negl Trop Dis. 2016;10:e0005055. [PMID: 27977671] doi:10.1371/journal.pntd.0005055 CrossrefMedlineGoogle Scholar - 15.
Tang B ,Xiao Y ,Wu J . Implication of vaccination against dengue for Zika outbreak. Sci Rep. 2016;6:35623. [PMID: 27774987] doi:10.1038/srep35623 CrossrefMedlineGoogle Scholar - 16.
Kucharski AJ ,Funk S ,Eggo RM ,Mallet HP ,Edmunds WJ ,Nilles EJ . Transmission dynamics of Zika virus in island populations: a modelling analysis of the 2013-14 French Polynesia outbreak. PLoS Negl Trop Dis. 2016;10:e0004726. [PMID: 27186984] doi:10.1371/journal.pntd.0004726 CrossrefMedlineGoogle Scholar - 17.
Russell K ,Hills SL ,Oster AM ,Porse CC ,Danyluk G ,Cone M ,et al . Male-to-female sexual transmission of Zika virus—United States, January-April 2016. Clin Infect Dis. 2017;64:211-3. [PMID: 27986688] doi:10.1093/cid/ciw692 CrossrefMedlineGoogle Scholar - 18.
Fagbami AH . Zika virus infections in Nigeria: virological and seroepidemiological investigations in Oyo State. J Hyg (Lond). 1979;83:213-9. [PMID: 489960] CrossrefMedlineGoogle Scholar - 19.
Sawyer WA . The persistence of yellow fever immunity. Journal of Preventive Medicine. 1931;5:413-28. Google Scholar - 20.
Durham DP ,Ndeffo-Mbah ML ,Skrip LA ,Jones FK ,Bauch CT ,Galvani AP . National- and state-level impact and cost-effectiveness of nonavalent HPV vaccination in the United States. Proc Natl Acad Sci U S A. 2016;113:5107-12. [PMID: 27091978] doi:10.1073/pnas.1515528113 CrossrefMedlineGoogle Scholar - 21.
Juarez F ,Martín TC . Partnership dynamics and sexual health risks among male adolescents in the Favelas of Recife, Brazil. Int Fam Plan Perspect. 2006;32:62-70. [PMID: 16837386] CrossrefMedlineGoogle Scholar - 22.
Wellings K ,Collumbien M ,Slaymaker E ,Singh S ,Hodges Z ,Patel D ,et al . Sexual behaviour in context: a global perspective. Lancet. 2006;368:1706-28. [PMID: 17098090] CrossrefMedlineGoogle Scholar - 23.
Zwizwai R . Infection disease surveillance update. Lancet Infect Dis. 2016;16:157. [PMID: 26867462] doi:10.1016/S1473-3099(16)00023-2 CrossrefMedlineGoogle Scholar - 24.
Luz PM ,Vanni T ,Medlock J ,Paltiel AD ,Galvani AP . Dengue vector control strategies in an urban setting: an economic modelling assessment. Lancet. 2011;377:1673-80. [PMID: 21546076] doi:10.1016/S0140-6736(11)60246-8 CrossrefMedlineGoogle Scholar - 25. World Health Organization; United Nations Children's Fund. WHO/UNICEF Zika virus (ZIKV) vaccine target product profile (TPP): vaccine to protect against congenital Zika syndrome for use during an emergency. Updated February 2017. Accessed at www.who.int/immunization/research/development/WHO_UNICEF_Zikavac_TPP_Feb2017.pdf on 6 September 2017. Google Scholar
- 26.
Lessler J ,Ott CT ,Carcelen AC ,Konikoff JM ,Williamson J ,Bi Q ,et al . Times to key events in Zika virus infection and implications for blood donation: a systematic review. Bull World Health Organ. 2016;94:841-9. [PMID: 27821887] CrossrefMedlineGoogle Scholar - 27.
Simmons G ,Brès V ,Lu K ,Liss NM ,Brambilla DJ ,Ryff KR ,et al . High incidence of chikungunya virus and frequency of viremic blood donations during epidemic, Puerto Rico, USA, 2014. Emerg Infect Dis. 2016;22:1221-8. [PMID: 27070192] doi:10.3201/eid2207.160116 CrossrefMedlineGoogle Scholar - 28.
Chevalier MS ,Biggerstaff BJ ,Basavaraju SV ,Ocfemia MCB ,Alsina JO ,Climent-Peris C ,et al . Use of blood donor screening data to estimate Zika virus incidence, Puerto Rico, April-August 2016. Emerg Infect Dis. 2017;23:790-5. [PMID: 28263141] doi:10.3201/eid2305.161873 CrossrefMedlineGoogle Scholar - 29. Rodriguez DM, Mier-y-Teran-Romero L, Johansson MA, Le M, Doone BN, Anand A, et al. Data repository of publicly available Zika data. Zenodo. Accessed at https://github.com/cdcepi/zika/tree/2017.05.29 on 27 February 2018. Google Scholar
- 30.
Honein MA ,Dawson AL ,Petersen EE ,Jones AM ,Lee EH ,Yazdy MM ,et al ;US Zika Pregnancy Registry Collaboration . Birth defects among fetuses and infants of US women with evidence of possible Zika virus infection during pregnancy. JAMA. 2017;317:59-68. [PMID: 27960197] doi:10.1001/jama.2016.19006 CrossrefMedlineGoogle Scholar - 31.
Ellington SR ,Devine O ,Bertolli J ,MartinezQuiñones A ,Shapiro-Mendoza CK ,Perez-Padilla J ,et al . Estimating the number of pregnant women infected with Zika virus and expected infants with microcephaly following the Zika virus outbreak in Puerto Rico, 2016. JAMA Pediatr. 2016;170:940-5. [PMID: 27544075] doi:10.1001/jamapediatrics.2016.2974 CrossrefMedlineGoogle Scholar - 32. Pan American Health Organization; World Health Organization. Zika suspected and confirmed cases reported by countries and territories in the Americas, 2015-2017: cumulative cases. Accessed at http://ais.paho.org/phip/viz/ed_zika_cases.asp on 27 February 2018. Google Scholar
- 33.
de Oliveira WK ,Carmo EH ,Henriques CM ,Coelho G ,Vazquez E ,Cortez-Escalante J ,et al . Zika virus infection and associated neurologic disorders in Brazil [Letter]. N Engl J Med. 2017;376:1591-3. [PMID: 28402236] doi:10.1056/NEJMc1608612 CrossrefMedlineGoogle Scholar - 34.
Dejnirattisai W ,Supasa P ,Wongwiwat W ,Rouvinski A ,Barba-Spaeth G ,Duangchinda T ,et al . Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat Immunol. 2016;17:1102-8. [PMID: 27339099] doi:10.1038/ni.3515 CrossrefMedlineGoogle Scholar - 35.
Zucker J ,Neu N ,Chiriboga CA ,Hinton VJ ,Leonardo M ,Sheikh A ,et al . Zika virus-associated cognitive impairment in adolescent, 2016. Emerg Infect Dis. 2017;23:1047-8. [PMID: 28518023] doi:10.3201/eid2306.162029 CrossrefMedlineGoogle Scholar - 36.
Schilte C ,Staikowsky F ,Staikovsky F ,Couderc T ,Madec Y ,Carpentier F ,et al . Chikungunya virus-associated long-term arthralgia: a 36-month prospective longitudinal study. PLoS Negl Trop Dis. 2013;7:e2137. [PMID: 23556021] doi:10.1371/journal.pntd.0002137 CrossrefMedlineGoogle Scholar - 37.
Gérardin P ,Sampériz S ,Ramful D ,Boumahni B ,Bintner M ,Alessandri JL ,et al . Neurocognitive outcome of children exposed to perinatal mother-to-child Chikungunya virus infection: the CHIMERE cohort study on Reunion Island. PLoS Negl Trop Dis. 2014;8:e2996. [PMID: 25033077] doi:10.1371/journal.pntd.0002996 CrossrefMedlineGoogle Scholar - 38.
Baud D ,Gubler DJ ,Schaub B ,Lanteri MC ,Musso D . An update on Zika virus infection. Lancet. 2017;390:2099-109. [PMID: 28647173] doi:10.1016/S0140-6736(17)31450-2 CrossrefMedlineGoogle Scholar - 39.
Harrison SC . Immunogenic cross-talk between dengue and Zika viruses. Nat Immunol. 2016;17:1010-2. [PMID: 27540984] doi:10.1038/ni.3539 CrossrefMedlineGoogle Scholar - 40.
Kawiecki AB ,Christofferson RC . Zika virus-induced antibody response enhances dengue virus serotype 2 replication in vitro. J Infect Dis. 2016;214:1357-60. [PMID: 27521359] CrossrefMedlineGoogle Scholar - 41.
Castanha PMS ,Nascimento EJM ,Braga C ,Cordeiro MT ,de Carvalho OV ,de Mendonça LR ,et al . Dengue virus-specific antibodies enhance Brazilian Zika virus infection. J Infect Dis. 2017;215:781-5. [PMID: 28039355] doi:10.1093/infdis/jiw638 CrossrefMedlineGoogle Scholar - 42.
Yakob L ,Walker T . Zika virus outbreak in the Americas: the need for novel mosquito control methods. Lancet Glob Health. 2016;4:e148-9. [PMID: 26848089] doi:10.1016/S2214-109X(16)00048-6 CrossrefMedlineGoogle Scholar - 43.
Dutra HL ,Rocha MN ,Dias FB ,Mansur SB ,Caragata EP ,Moreira LA . Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host Microbe. 2016;19:771-4. [PMID: 27156023] doi:10.1016/j.chom.2016.04.021 CrossrefMedlineGoogle Scholar - 44.
Gagnon AS ,Smoyer-Tomic KE ,Bush AB . The El Niño southern oscillation and malaria epidemics in South America. Int J Biometeorol. 2002;46:81-9. [PMID: 12135203] CrossrefMedlineGoogle Scholar - 45.
Caminade C ,Turner J ,Metelmann S ,Hesson JC ,Blagrove MS ,Solomon T ,et al . Global risk model for vector-borne transmission of Zika virus reveals the role of El Niño 2015. Proc Natl Acad Sci U S A. 2017;114:119-24. [PMID: 27994145] doi:10.1073/pnas.1614303114 CrossrefMedlineGoogle Scholar
Author, Article, and Disclosure Information
David P. Durham,
Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, Connecticut (D.P.D., M.L.N., A.S.P., A.P.G.)
Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, Connecticut, and Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland (M.C.F.)
U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, Maryland (N.L.M.)
Disclaimer: The views expressed are those of the authors and should not be construed to represent the positions of the U.S. Army or Department of Defense.
Grant Support: By grants U01 GM087719 and U01 GM105627 from the National Institutes of Health (NIH). Dr. Fitzpatrick was also supported by grant T32 AI007524 from the NIH. Simulations were run on the Yale University Biomedical High Performance Computing Center, which is supported by NIH grants RR19895 and RR029676-01.
Disclosures: Dr. Durham reports grants from the NIH during the conduct of the study. Dr. Fitzpatrick reports grants from the NIH during the conduct of the study and personal fees from Merck and Sanofi Pasteur outside the submitted work. Dr. Michael reports grants from the Department of Defense and Department of the Army paid to Walter Reed Army Institute of Research during the conduct of the study. Authors not named here have disclosed no conflicts of interest. Disclosures can also be viewed at www.acponline.org/authors/icmje/ConflictOfInterestForms.do?msNum=M17-0641.
Editors' Disclosures: Christine Laine, MD, MPH, Editor in Chief, reports that her spouse has stock options/holdings with Targeted Diagnostics and Therapeutics. Darren B. Taichman, MD, PhD, Executive Editor, reports that he has no financial relationships or interests to disclose. Cynthia D. Mulrow, MD, MSc, Senior Deputy Editor, reports that she has no relationships or interests to disclose. Deborah Cotton, MD, MPH, Deputy Editor, reports that she has no financial relationships or interest to disclose. Jaya K. Rao, MD, MHS, Deputy Editor, reports that she has stock holdings/options in Eli Lilly and Pfizer. Sankey V. Williams, MD, Deputy Editor, reports that he has no financial relationships or interests to disclose. Catharine B. Stack, PhD, MS, Deputy Editor for Statistics, reports that she has stock holdings in Pfizer and Johnson & Johnson.
Reproducible Research Statement:Study protocol: Not applicable. Statistical code and data set: Available at https://github.com/davidpdurham/ZikaVaccination.
Corresponding Author: Alison P. Galvani, PhD, Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, 135 College Street, New Haven, CT 06510; e-mail, alison.
Current Author Addresses: Drs. Durham, Fitzpatrick, Ndeffo-Mbah, and Galvani and Ms. Parpia: Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, 135 College Street, New Haven, CT 06510.
Dr. Michael: U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 6720A Rockledge Drive, Bethesda, MD 20817.
Author Contributions: Conception and design: D.P. Durham, M.C. Fitzpatrick, A.P. Galvani, M.L. Ndeffo-Mbah, N.L. Michael.
Analysis and interpretation of the data: D.P. Durham, M.C. Fitzpatrick, A.P. Galvani, A.S. Parpia, N.L. Michael.
Drafting of the article: D.P. Durham, A.P. Galvani, M.L. Ndeffo-Mbah, N.L. Michael.
Critical revision of the article for important intellectual content: D.P. Durham, M.C. Fitzpatrick, A.P. Galvani, M.L. Ndeffo-Mbah, A.S. Parpia, N.L. Michael.
Final approval of the article: D.P. Durham, M.C. Fitzpatrick, M.L. Ndeffo-Mbah, A.S. Parpia, N.L. Michael, A.P. Galvani.
Statistical expertise: D.P. Durham.
Obtaining of funding: A.P. Galvani.
Administrative, technical, or logistic support: D.P. Durham.
Collection and assembly of data: D.P. Durham, A.S. Parpia.
This article was published at Annals.org on 3 April 2018.
Submit a Comment
Contributors must reveal any conflict of interest. Comments are moderated. Please see our information for authorsregarding comments on an Annals publication.
*All comments submitted after October 1, 2021 and selected for publication will be published online only.