Abstract
Zika virus (ZIKV) infection in pregnancy is associated with adverse fetal outcomes, such as microcephaly and other congenital malformations. No therapeutic options are available to pregnant women with ZIKV infection to prevent these effects. Drug trials in pregnancy raise several scientific, ethical, and logistic challenges, which are compounded further in ZIKV because of limited knowledge of the disease pathophysiology and a product development pipeline in its infancy. We evaluate the major challenges in choosing therapeutics to prevent congenital ZIKV disease and conducting clinical trials of these treatments, with a focus on preventing congenital central nervous system malformations. These challenges must be characterized and planned for now so that clinical trials can progress expediently and effectively in the future.
References
- 1.
Petersen LR ,Jamieson DJ ,Powers AM ,Honein MA . Zika virus. N Engl J Med. 2016;374:1552-63. [PMID: 27028561] doi:10.1056/NEJMra1602113 CrossrefMedlineGoogle Scholar - 2. World Health Organization. Situation report: Zika virus, microcephaly, and Guillain-Barré syndrome. 29 December 2016. Accessed at http://apps.who.int/iris/bitstream/10665/252672/1/zikasitrep29Dec16-eng.pdf?ua=1 on 14 October 2016. Google Scholar
- 3.
Rasmussen SA ,Jamieson DJ ,Honein MA ,Petersen LR . Zika virus and birth defects—reviewing the evidence for causality. N Engl J Med. 2016;374:1981-7. [PMID: 27074377] doi:10.1056/NEJMsr1604338 CrossrefMedlineGoogle Scholar - 4.
Costello A ,Dua T ,Duran P ,Gülmezoglu M ,Oladapo OT ,Perea W ,et al . Defining the syndrome associated with congenital Zika virus infection. Bull World Health Organ. 2016;94:406-406A. [PMID: 27274588] doi:10.2471/BLT.16.176990 CrossrefMedlineGoogle Scholar - 5. World Health Organization. Zika strategic response framework & joint operations plan: January-June 2016. February 2016. Accessed at www.who.int/emergencies/zika-virus/strategic-response-framework.pdf on 14 October 2016. Google Scholar
- 6.
Sheffield JS ,Siegel D ,Mirochnick M ,Heine RP ,Nguyen C ,Bergman KL ,et al . Designing drug trials: considerations for pregnant women. Clin Infect Dis. 2014;59 Suppl 7:S437-44. [PMID: 25425722] doi:10.1093/cid/ciu709 CrossrefMedlineGoogle Scholar - 7.
Brasil P ,Pereira JP ,Moreira ME ,Ribeiro Nogueira RM ,Damasceno L ,Wakimoto M ,et al . Zika virus infection in pregnant women in Rio de Janeiro. N Engl J Med. 2016;375:2321-34. [PMID: 26943629] CrossrefMedlineGoogle Scholar - 8.
Ekins S ,Mietchen D ,Coffee M ,Stratton TP ,Freundlich JS ,Freitas-Junior L ,et al . Open drug discovery for the Zika virus. F1000Res. 2016;5:150. [PMID: 27134728] doi:10.12688/f1000research.8013.1 CrossrefMedlineGoogle Scholar - 9.
Kouznetsova J ,Sun W ,Martínez-Romero C ,Tawa G ,Shinn P ,Chen CZ ,et al . Identification of 53 compounds that block Ebola virus-like particle entry via a repurposing screen of approved drugs. Emerg Microbes Infect. 2014;3:e84. [PMID: 26038505] doi:10.1038/emi.2014.88 CrossrefMedlineGoogle Scholar - 10.
Zmurko J ,Marques RE ,Schols D ,Verbeken E ,Kaptein SJF ,Neyts J . The viral polymerase inhibitor 7-deaza-2'-C-methyladenosine is a potent inhibitor of in vitro Zika virus replication and delays disease progression in a robust mouse infection model. PLoS Negl Trop Dis. 2016;10:e0004695. doi:10.1371/journal.pntd.0004695 CrossrefMedlineGoogle Scholar - 11.
Sacramento CQ ,de Melo GR ,Rocha N ,Hoelz L . The clinically approved antiviral drug sofosbuvir impairs Brazilian Zika virus replication. bioRxivorg. 2016:061671. Google Scholar - 12.
Xu M ,Lee EM ,Wen Z ,Cheng Y ,Huang WK ,Qian X ,et al . Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med. 2016;22:1101-7. [PMID: 27571349] doi:10.1038/nm.4184 CrossrefMedlineGoogle Scholar - 13.
Barrows NJ ,Campos RK ,Powell ST ,Prasanth KR ,Schott-Lerner G ,Soto-Acosta R ,et al . A screen of FDA-approved drugs for inhibitors of Zika virus infection. Cell Host Microbe. 2016;20:259-70. [PMID: 27476412] doi:10.1016/j.chom.2016.07.004 CrossrefMedlineGoogle Scholar - 14.
Driggers RW ,Ho CY ,Korhonen EM ,Kuivanen S ,Jääskeläinen AJ ,Smura T ,et al . Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N Engl J Med. 2016;374:2142-51. [PMID: 27028667 doi:10.1056/NEJMoa1601824] CrossrefMedlineGoogle Scholar - 15.
Adibi JJ ,Marques ET ,Cartus A ,Beigi RH . Teratogenic effects of the Zika virus and the role of the placenta. Lancet. 2016;387:1587-90. [PMID: 26952548] doi:10.1016/S0140-6736(16)00650-4 CrossrefMedlineGoogle Scholar - 16.
Bell TM ,Field EJ ,Narang HK . Zika virus infection of the central nervous system of mice. Arch Gesamte Virusforsch. 1971;35:183-93. [PMID: 5002906] CrossrefMedlineGoogle Scholar - 17.
Hamel R ,Dejarnac O ,Wichit S ,Ekchariyawat P ,Neyret A ,Luplertlop N ,et al . Biology of Zika virus infection in human skin cells. J Virol. 2015;89:8880-96. [PMID: 26085147] doi:10.1128/JVI.00354-15 CrossrefMedlineGoogle Scholar - 18.
Nowakowski TJ ,Pollen AA ,DiLullo E ,Sandoval-Espinosa C ,Bershteyn M ,Kriegstein AR . Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells. Cell Stem Cell. 2016;18:591-6. [PMID: 27038591] doi:10.1016/j.stem.2016.03.012 CrossrefMedlineGoogle Scholar - 19.
Tang H ,Hammack C ,Ogden SC ,Wen Z ,Qian X ,Li Y ,et al . Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell. 2016;18:587-90. [PMID: 26952870] doi:10.1016/j.stem.2016.02.016 CrossrefMedlineGoogle Scholar - 20.
Li C ,Xu D ,Ye Q ,Hong S ,Jiang Y ,Liu X ,et al . Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell. 2016;19:120-6. [PMID: 27179424] doi:10.1016/j.stem.2016.04.017 CrossrefMedlineGoogle Scholar - 21.
Solozobova V ,Wyvekens N ,Pruszak J . Lessons from the embryonic neural stem cell niche for neural lineage differentiation of pluripotent stem cells. Stem Cell Rev. 2012;8:813-29. [PMID: 22628111] doi:10.1007/s12015-012-9381-8 CrossrefMedlineGoogle Scholar - 22.
Barkovich AJ ,Guerrini R ,Kuzniecky RI ,Jackson GD ,Dobyns WB . A developmental and genetic classification for malformations of cortical development: update 2012. Brain. 2012;135:1348-69. [PMID: 22427329] doi:10.1093/brain/aws019 CrossrefMedlineGoogle Scholar - 23.
Ji R ,Tian S ,Lu HJ ,Lu Q ,Zheng Y ,Wang X ,et al . TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation. J Immunol. 2013;191:6165-77. [PMID: 24244024] doi:10.4049/jimmunol.1302229 CrossrefMedlineGoogle Scholar - 24.
Pierce AM ,Keating AK . TAM receptor tyrosine kinases: expression, disease and oncogenesis in the central nervous system. Brain Res. 2014;1542:206-20. [PMID: 24184575] doi:10.1016/j.brainres.2013.10.049 CrossrefMedlineGoogle Scholar - 25.
Knuesel I ,Chicha L ,Britschgi M ,Schobel SA ,Bodmer M ,Hellings JA ,et al . Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol. 2014;10:643-60. [PMID: 25311587] doi:10.1038/nrneurol.2014.187 CrossrefMedlineGoogle Scholar - 26.
Boksa P . Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav Immun. 2010;24:881-97. [PMID: 20230889] doi:10.1016/j.bbi.2010.03.005 CrossrefMedlineGoogle Scholar - 27.
Holt PG ,Jones CA . The development of the immune system during pregnancy and early life. Allergy. 2000;55:688-97. [PMID: 10955693] CrossrefMedlineGoogle Scholar - 28.
Dang J ,Tiwari SK ,Lichinchi G ,Qin Y ,Patil VS ,Eroshkin AM ,et al . Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell. 2016;19:258-65. [PMID: 27162029] doi:10.1016/j.stem.2016.04.014 CrossrefMedlineGoogle Scholar - 29.
Carty M ,Reinert L ,Paludan SR ,Bowie AG . Innate antiviral signalling in the central nervous system. Trends Immunol. 2014;35:79-87. [PMID: 24316012] doi:10.1016/j.it.2013.10.012 CrossrefMedlineGoogle Scholar - 30.
Okun E ,Griffioen KJ ,Mattson MP . Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci. 2011;34:269-81. [PMID: 21419501] doi:10.1016/j.tins.2011.02.005 CrossrefMedlineGoogle Scholar - 31.
Miner JJ ,Cao B ,Govero J ,Smith AM ,Fernandez E ,Cabrera OH ,et al . Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell. 2016;165:1081-91. [PMID: 27180225] doi:10.1016/j.cell.2016.05.008 CrossrefMedlineGoogle Scholar - 32.
Delorme-Axford E ,Bayer A ,Sadovsky Y ,Coyne CB . Autophagy as a mechanism of antiviral defense at the maternal-fetal interface. Autophagy. 2013;9:2173-4. [PMID: 24231730] doi:10.4161/auto.26558 CrossrefMedlineGoogle Scholar - 33.
Robbins JR ,Bakardjiev AI . Pathogens and the placental fortress. Curr Opin Microbiol. 2012;15:36-43. [PMID: 22169833] doi:10.1016/j.mib.2011.11.006 CrossrefMedlineGoogle Scholar - 34.
Johansson MA ,Mier-y-Teran-Romero L ,Reefhuis J ,Gilboa SM ,Hills SL . Zika and the risk of microcephaly. N Engl J Med. 2016;375:1-4. [PMID: 27222919] doi:10.1056/NEJMp1605367 CrossrefMedlineGoogle Scholar - 35.
Gude NM ,Roberts CT ,Kalionis B ,King RG . Growth and function of the normal human placenta. Thromb Res. 2004;114:397-407. [PMID: 15507270] CrossrefMedlineGoogle Scholar - 36.
Ilekis JV ,Tsilou E ,Fisher S ,Abrahams VM ,Soares MJ ,Cross JC ,et al . Placental origins of adverse pregnancy outcomes: potential molecular targets: an Executive Workshop Summary of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Am J Obstet Gynecol. 2016;215:S1-S46. [PMID: 26972897] doi:10.1016/j.ajog.2016.03.001 CrossrefMedlineGoogle Scholar - 37.
Keller MA ,Stiehm ER . Passive immunity in prevention and treatment of infectious diseases. Clin Microbiol Rev. 2000;13:602-14. [PMID: 11023960] CrossrefMedlineGoogle Scholar - 38.
McLean HQ ,Fiebelkorn AP ,Temte JL ,Wallace GS ;Centers for Disease Control and Prevention . Prevention of measles, rubella, congenital rubella syndrome, and mumps, 2013: summary recommendations of the Advisory Committee on Immunization Practices (ACIP) [erratum in: MMWR Recomm Rep. 2015;64:259]. MMWR Recomm Rep. 2013;62:1-34. [PMID: 23760231] MedlineGoogle Scholar - 39.
Centers for Disease Control and Prevention (CDC) . Updated recommendations for use of VariZIG—United States, 2013. MMWR Morb Mortal Wkly Rep. 2013;62:574-6. [PMID: 23863705] MedlineGoogle Scholar - 40.
Nigro G ,Adler SP ,LaTorre R ,Best AM ;Congenital Cytomegalovirus Collaborating Group . Passive immunization during pregnancy for congenital cytomegalovirus infection. N Engl J Med. 2005;353:1350-62. [PMID: 16192480] CrossrefMedlineGoogle Scholar - 41.
Nigro G ,Adler SP ,Parruti G ,Anceschi MM ,Coclite E ,Pezone I ,et al . Immunoglobulin therapy of fetal cytomegalovirus infection occurring in the first half of pregnancy—a case-control study of the outcome in children. J Infect Dis. 2012;205:215-27. [PMID: 22140265] doi:10.1093/infdis/jir718 CrossrefMedlineGoogle Scholar - 42.
Visentin S ,Manara R ,Milanese L ,Da Roit A ,Forner G ,Salviato E ,et al . Early primary cytomegalovirus infection in pregnancy: maternal hyperimmunoglobulin therapy improves outcomes among infants at 1 year of age. Clin Infect Dis. 2012;55:497-503. [PMID: 22539662] doi:10.1093/cid/cis423 CrossrefMedlineGoogle Scholar - 43.
Revello MG ,Lazzarotto T ,Guerra B ,Spinillo A ,Ferrazzi E ,Kustermann A ,et al ;CHIP Study Group . A randomized trial of hyperimmune globulin to prevent congenital cytomegalovirus. N Engl J Med. 2014;370:1316-26. [PMID: 24693891] doi:10.1056/NEJMoa1310214 CrossrefMedlineGoogle Scholar - 44. A randomized trial to prevent congenital cytomegalovirus (CMV). ClinicalTrials.gov: NCT01376778. Accessed at https://clinicaltrials.gov/ct2/show/NCT01376778 on 14 October 2016. Google Scholar
- 45. Prevention of congenital CMV infection in infants of mothers with primary CMV infection during pregnancy. EudraCT Number: 2007-004692-19. Accessed at https://www.clinicaltrialsregister.eu/ctr-search/trial/2007-004692-19/IT on 14 October 2016. Google Scholar
- 46.
Stricker RB ,Steinleitner A ,Winger EE . Intravenous immunoglobulin (IVIG) therapy for immunologic abortion. Clin Appl Immunol Rev. 2002;2:187-99. CrossrefGoogle Scholar - 47.
Dejnirattisai W ,Supasa P ,Wongwiwat W ,Rouvinski A ,Barba-Spaeth G ,Duangchinda T ,et al . Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat Immunol. 2016;17:1102-8. CrossrefMedlineGoogle Scholar - 48.
Teixeira MG ,Siqueira JB ,Ferreira GL ,Bricks L ,Joint G . Epidemiological trends of dengue disease in Brazil (2000-2010): a systematic literature search and analysis. PLoS Negl Trop Dis. 2013;7:e2520. [PMID: 24386496] doi:10.1371/journal.pntd.0002520 CrossrefMedlineGoogle Scholar - 49.
Costantine MM . Physiologic and pharmacokinetic changes in pregnancy. Front Pharmacol. 2014;5:65. [PMID: 24772083] doi:10.3389/fphar.2014.00065 CrossrefMedlineGoogle Scholar - 50.
Griffiths SK ,Campbell JP . Placental structure, function and drug transfer. Continuing Education in Anaesthesia, Critical Care & Pain. 2015;15:84-9. CrossrefGoogle Scholar - 51.
Ala-Kokko TI ,Myllynen P ,Vahakangas K . Ex vivo perfusion of the human placental cotyledon: implications for anesthetic pharmacology. Int J Obstet Anesth. 2000;9:26-38. CrossrefGoogle Scholar - 52.
Hutson JR ,Garcia-Bournissen F ,Davis A ,Koren G . The human placental perfusion model: a systematic review and development of a model to predict in vivo transfer of therapeutic drugs. Clin Pharmacol Ther. 2011;90:67-76. [PMID: 21562489] doi:10.1038/clpt.2011.66 CrossrefMedlineGoogle Scholar - 53.
Ben-Hur H ,Gurevich P ,Elhayany A ,Avinoach I ,Schneider DF ,Zusman I . Transport of maternal immunoglobulins through the human placental barrier in normal pregnancy and during inflammation. Int J Mol Med. 2005;16:401-7. [PMID: 16077946] MedlineGoogle Scholar - 54.
Abbott NJ . Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol. 2000;20:131-47. [PMID: 10696506] CrossrefMedlineGoogle Scholar - 55.
Clancy B ,Finlay BL ,Darlington RB ,Anand KJ . Extrapolating brain development from experimental species to humans. Neurotoxicology. 2007;28:931-7. [PMID: 17368774] CrossrefMedlineGoogle Scholar - 56.
Schachter AD ,Kohane IS . Drug target-gene signatures that predict teratogenicity are enriched for developmentally related genes. Reprod Toxicol. 2011;31:562-9. [PMID: 21115113] doi:10.1016/j.reprotox.2010.11.008 CrossrefMedlineGoogle Scholar - 57.
Furtado JM ,Espósito DL ,Klein TM ,Teixeira-Pinto T ,da Fonseca BA . Uveitis associated with Zika virus infection [Letter]. N Engl J Med. 2016;375:394-6. [PMID: 27332784] doi:10.1056/NEJMc1603618 CrossrefMedlineGoogle Scholar - 58.
Simeone RM ,Shapiro-Mendoza CK ,Meaney-Delman D ,Petersen EE ,Galang RR ,Oduyebo T ,et al ;Zika and Pregnancy Working Group . Possible Zika virus infection among pregnant women—United States and Territories, May 2016. MMWR Morb Mortal Wkly Rep. 2016;65:514-9. [PMID: 27248295] doi:10.15585/mmwr.mm6520e1 CrossrefMedlineGoogle Scholar - 59. Centers for Disease Control and Prevention. Revised diagnostic testing for Zika, chikungunya, and dengue viruses in US Public Health Laboratories. 7 February 2016. Accessed at www.cdc.gov/zika/pdfs/denvchikvzikv-testing-algorithm.pdf on 14 October 2016. Google Scholar
- 60.
Casadevall A ,Pirofski LA . Antibody-mediated regulation of cellular immunity and the inflammatory response. Trends Immunol. 2003;24:474-8. [PMID: 12967670] CrossrefMedlineGoogle Scholar - 61.
Gilmore EC ,Walsh CA . Genetic causes of microcephaly and lessons for neuronal development. Wiley Interdiscip Rev Dev Biol. 2013;2:461-78. [PMID: 24014418] doi:10.1002/wdev.89 CrossrefMedlineGoogle Scholar - 62.
Mankarious S ,Lee M ,Fischer S ,Pyun KH ,Ochs HD ,Oxelius VA ,et al . The half-lives of IgG subclasses and specific antibodies in patients with primary immunodeficiency who are receiving intravenously administered immunoglobulin. J Lab Clin Med. 1988;112:634-40. [PMID: 3183495] MedlineGoogle Scholar - 63.
Robinson DP ,Klein SL . Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm Behav. 2012;62:263-71. [PMID: 22406114] doi:10.1016/j.yhbeh.2012.02.023 CrossrefMedlineGoogle Scholar - 64. World Health Organization. Screening, assessment and management of neonates and infants with complications associated with Zika virus exposure in utero: interim guidance. 2016. Accessed at http://apps.who.int/iris/bitstream/10665/204475/1/WHO_ZIKV_MOC_16.3_eng.pdf?ua=1 on 14 October 2016. Google Scholar
- 65.
Leviton A ,Holmes LB ,Allred EN ,Vargas J . Methodologic issues in epidemiologic studies of congenital microcephaly. Early Hum Dev. 2002;69:91-105. [PMID: 12324187] CrossrefMedlineGoogle Scholar - 66.
Sells CJ . Microcephaly in a normal school population. Pediatrics. 1977;59:262-5. [PMID: 834509] MedlineGoogle Scholar - 67.
Custer DA ,Vezina LG ,Vaught DR ,Brasseux C ,Samango-Sprouse CA ,Cohen MS ,et al . Neurodevelopmental and neuroimaging correlates in nonsyndromal microcephalic children. J Dev Behav Pediatr. 2000;21:12-8. [PMID: 10706344] CrossrefMedlineGoogle Scholar - 68.
de Fatima Vasco Aragao M ,van der Linden V ,Brainer-Lima AM ,Coeli RR ,Rocha MA ,Sobral da Silva P ,et al . Clinical features and neuroimaging (CT and MRI) findings in presumed Zika virus related congenital infection and microcephaly: retrospective case series study. BMJ. 2016;353:i1901. [PMID: 27075009] doi:10.1136/bmj.i1901 CrossrefMedlineGoogle Scholar - 69.
Rasmussen SA ,Hernandez-Diaz S ,Abdul-Rahman OA ,Sahin L ,Petrie CR ,Keppler-Noreuil KM ,et al . Assessment of congenital anomalies in infants born to pregnant women enrolled in clinical trials. Clin Infect Dis. 2014;59 Suppl 7:S428-36. [PMID: 25425721] doi:10.1093/cid/ciu738 CrossrefMedlineGoogle Scholar - 70.
Lazzarotto T ,Varani S ,Guerra B ,Nicolosi A ,Lanari M ,Landini MP . Prenatal indicators of congenital cytomegalovirus infection. J Pediatr. 2000;137:90-5. [PMID: 10891828] CrossrefMedlineGoogle Scholar
Author, Article, and Disclosure Information
Alex P. Salam,
From University of Oxford, Oxford, United Kingdom.
Acknowledgment: The authors thank Emmanuelle Denis for the figure.
Grant Support: Peter Horby is supported by the Wellcome Trust of Great Britain (grants 107834/Z/15/Z and 106491/Z/14/Z), European Union FP7 project PREPARE (Platform for European Preparedness Against [Re-]emerging Epidemics; grant 602525), and Medical Research Council UK (MC_PC_15001). Dr. Rojek is funded by a Rhodes Scholarship.
Disclosures: Authors have disclosed no conflicts of interest. Forms can be viewed at www.acponline.org/authors/icmje/ConflictOfInterestForms.do?msNum=M16-2530.
Corresponding Author: Alex Salam, MBChB, MSc, Epidemic Diseases Research Group Oxford, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, United Kingdom; e-mail, alexsalam@doctors.
Current Author Addresses: Drs. Salam, Rojek, Dunning, and Horby: Epidemic Diseases Research Group Oxford, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, United Kingdom.
Author Contributions: Conception and design: A.P. Salam, A. Rojek, J. Dunning, P.W. Horby.
Analysis and interpretation of the data: A.P. Salam, A. Rojek.
Drafting of the article: A.P. Salam, A. Rojek, J. Dunning, P.W. Horby.
Critical revision for important intellectual content: A.P. Salam, A. Rojek, J. Dunning, P.W. Horby.
Final approval of the article: A.P. Salam, A. Rojek, J. Dunning, P.W. Horby.
Collection and assembly of data: A.P. Salam, A. Rojek.
This article was published at Annals.org on 21 March 2017.
Submit a Comment
Contributors must reveal any conflict of interest. Comments are moderated. Please see our information for authorsregarding comments on an Annals publication.
*All comments submitted after October 1, 2021 and selected for publication will be published online only.