Original Research7 February 2017
A Cross-sectional Study
    Author, Article, and Disclosure Information

    Abstract

    Background:

    Given the rapid increase in the popularity of e-cigarettes and the paucity of associated longitudinal health-related data, the need to assess the potential risks of long-term use is essential.

    Objective:

    To compare exposure to nicotine, tobacco-related carcinogens, and toxins among smokers of combustible cigarettes only, former smokers with long-term e-cigarette use only, former smokers with long-term nicotine replacement therapy (NRT) use only, long-term dual users of both combustible cigarettes and e-cigarettes, and long-term users of both combustible cigarettes and NRT.

    Design:

    Cross-sectional study.

    Setting:

    United Kingdom.

    Participants:

    The following 5 groups were purposively recruited: combustible cigarette–only users, former smokers with long-term (≥6 months) e-cigarette–only or NRT-only use, and long-term dual combustible cigarette–e-cigarette or combustible cigarette–NRT users (n = 36 to 37 per group; total n = 181).

    Measurements:

    Sociodemographic and smoking characteristics were assessed. Participants provided urine and saliva samples and were analyzed for biomarkers of nicotine, tobacco-specific N-nitrosamines (TSNAs), and volatile organic compounds (VOCs).

    Results:

    After confounders were controlled for, no clear between-group differences in salivary or urinary biomarkers of nicotine intake were found. The e-cigarette–only and NRT-only users had significantly lower metabolite levels for TSNAs (including the carcinogenic metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol [NNAL]) and VOCs (including metabolites of the toxins acrolein; acrylamide; acrylonitrile; 1,3-butadiene; and ethylene oxide) than combustible cigarette–only, dual combustible cigarette–e-cigarette, or dual combustible cigarette–NRT users. The e-cigarette–only users had significantly lower NNAL levels than all other groups. Combustible cigarette–only, dual combustible cigarette–NRT, and dual combustible cigarette–e-cigarette users had largely similar levels of TSNA and VOC metabolites.

    Limitation:

    Cross-sectional design with self-selected sample.

    Conclusion:

    Former smokers with long-term e-cigarette–only or NRT-only use may obtain roughly similar levels of nicotine compared with smokers of combustible cigarettes only, but results varied. Long-term NRT-only and e-cigarette–only use, but not dual use of NRTs or e-cigarettes with combustible cigarettes, is associated with substantially reduced levels of measured carcinogens and toxins relative to smoking only combustible cigarettes.

    Primary Funding Source:

    Cancer Research UK.

    References

    • 1. Vardavas CIFilippidis FTAgaku ITDeterminants and prevalence of e-cigarette use throughout the European Union: a secondary analysis of 26 566 youth and adults from 27 Countries. Tob Control2015;24:442-8. [PMID: 24935441] doi:10.1136/tobaccocontrol-2013-051394 CrossrefMedlineGoogle Scholar
    • 2. Hajek PEtter JFBenowitz NEissenberg TMcRobbie HElectronic cigarettes: review of use, content, safety, effects on smokers and potential for harm and benefit. Addiction2014;109:1801-10. [PMID: 25078252] doi:10.1111/add.12659 CrossrefMedlineGoogle Scholar
    • 3. Grana RBenowitz NGlantz SAE-cigarettes: a scientific review. Circulation2014;129:1972-86. [PMID: 24821826] doi:10.1161/CIRCULATIONAHA.114.007667 CrossrefMedlineGoogle Scholar
    • 4. Goniewicz MLKnysak JGawron MKosmider LSobczak AKurek Jet alLevels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob Control2014;23:133-9. [PMID: 23467656] doi:10.1136/tobaccocontrol-2012-050859 CrossrefMedlineGoogle Scholar
    • 5. Jensen RPLuo WPankow JFStrongin RMPeyton DHHidden formaldehyde in e-cigarette aerosols [Letter]. N Engl J Med2015;372:392-4. [PMID: 25607446] doi:10.1056/NEJMc1413069 CrossrefMedlineGoogle Scholar
    • 6. Kim HJShin HSDetermination of tobacco-specific nitrosamines in replacement liquids of electronic cigarettes by liquid chromatography-tandem mass spectrometry. J Chromatogr A2013;1291:48-55. [PMID: 23602640] doi:10.1016/j.chroma.2013.03.035 CrossrefMedlineGoogle Scholar
    • 7. Sussan TEGajghate SThimmulappa RKMa JKim JHSudini Ket alExposure to electronic cigarettes impairs pulmonary anti-bacterial and anti-viral defenses in a mouse model. PLoS One2015;10:e0116861. [PMID: 25651083] doi:10.1371/journal.pone.0116861 CrossrefMedlineGoogle Scholar
    • 8. Bullen CMcRobbie HThornley SGlover MLin RLaugesen MEffect of an electronic nicotine delivery device (e cigarette) on desire to smoke and withdrawal, user preferences and nicotine delivery: randomised cross-over trial. Tob Control2010;19:98-103. [PMID: 20378585] doi:10.1136/tc.2009.031567 CrossrefMedlineGoogle Scholar
    • 9. Etter JFBullen CFlouris ADLaugesen MEissenberg TElectronic nicotine delivery systems: a research agenda. Tob Control2011;20:243-8. [PMID: 21415064] doi:10.1136/tc.2010.042168 CrossrefMedlineGoogle Scholar
    • 10. Vansickel AREissenberg TElectronic cigarettes: effective nicotine delivery after acute administration. Nicotine Tob Res2013;15:267-70. [PMID: 22311962] doi:10.1093/ntr/ntr316 CrossrefMedlineGoogle Scholar
    • 11. Hecht SSCarmella SGKotandeniya DPillsbury MEChen MRansom BWet alEvaluation of toxicant and carcinogen metabolites in the urine of e-cigarette users versus cigarette smokers. Nicotine Tob Res2015;17:704-9. [PMID: 25335945] doi:10.1093/ntr/ntu218 CrossrefMedlineGoogle Scholar
    • 12. McRobbie HPhillips AGoniewicz MLSmith KMKnight-West OPrzulj Det alEffects of switching to electronic cigarettes with and without concurrent smoking on exposure to nicotine, carbon monoxide, and acrolein. Cancer Prev Res (Phila)2015;8:873-8. [PMID: 26333731] doi:10.1158/1940-6207.CAPR-15-0058 CrossrefMedlineGoogle Scholar
    • 13. Goniewicz MGawron MSmith DMPeng MJacob PBenowitz NExposure to nicotine and selected toxicants in cigarette smokers who switched to electronic cigarettes: a longitudinal within-subjects observational study. Nicotine Tob Res2016. [PMID: 27613896] doi:10.1093/ntr/ntw160 CrossrefMedlineGoogle Scholar
    • 14. Lee YHGawron MGoniewicz MLChanges in puffing behavior among smokers who switched from tobacco to electronic cigarettes. Addict Behav2015;48:1-4. [PMID: 25930009] doi:10.1016/j.addbeh.2015.04.003 CrossrefMedlineGoogle Scholar
    • 15. McQueen ATower SSumner WInterviews with “vapers”: implications for future research with electronic cigarettes. Nicotine Tob Res2011;13:860-7. [PMID: 21571692] doi:10.1093/ntr/ntr088 CrossrefMedlineGoogle Scholar
    • 16. Silla KBeard EShahab LCharacterization of long-term users of nicotine replacement therapy: evidence from a national survey. Nicotine Tob Res2014;16:1050-5. [PMID: 24610398] doi:10.1093/ntr/ntu019 CrossrefMedlineGoogle Scholar
    • 17. McMillen RCGottlieb MAShaefer RMWinickoff JPKlein JDTrends in electronic cigarette use among U.S. adults: use is increasing in both smokers and nonsmokers. Nicotine Tob Res2015;17:1195-202. [PMID: 25381306] doi:10.1093/ntr/ntu213. CrossrefMedlineGoogle Scholar
    • 18. Le Houezec JMcNeill ABritton JTobacco, nicotine and harm reduction. Drug Alcohol Rev2011;30:119-23. [PMID: 21375611] doi:10.1111/j.1465-3362.2010.00264.x CrossrefMedlineGoogle Scholar
    • 19. Murray RPConnett JEZapawa LMDoes nicotine replacement therapy cause cancer? Evidence from the Lung Health Study. Nicotine Tob Res2009;11:1076-82. [PMID: 19571249] doi:10.1093/ntr/ntp104 CrossrefMedlineGoogle Scholar
    • 20. Moore DAveyard PConnock MWang DFry-Smith ABarton PEffectiveness and safety of nicotine replacement therapy assisted reduction to stop smoking: systematic review and meta-analysis. BMJ2009;338:b1024. [PMID: 19342408] doi:10.1136/bmj.b1024 CrossrefMedlineGoogle Scholar
    • 21. Stead LFPerera RBullen CMant DHartmann-Boyce JCahill Ket alNicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev2012;11:CD000146. [PMID: 23152200] doi:10.1002/14651858.CD000146.pub4 CrossrefMedlineGoogle Scholar
    • 22. National Institute for Health and Care Excellence. Smoking: Harm Reduction. NICE Guideline no. PH45. London: National Institute for Health and Care Excellence; 2013. Accessed at www.nice.org.uk/guidance/ph45 on 12 August 2016. Google Scholar
    • 23. Nelson VAGoniewicz MLBeard EBrown JSheals KWest Ret alComparison of the characteristics of long-term users of electronic cigarettes versus nicotine replacement therapy: a cross-sectional survey of English ex-smokers and current smokers. Drug Alcohol Depend2015;153:300-5. [PMID: 26026493] doi:10.1016/j.drugalcdep.2015.05.005 CrossrefMedlineGoogle Scholar
    • 24. Brose LSTombor IShahab LWest RThe effect of reducing the threshold for carbon monoxide validation of smoking abstinence—evidence from the English Stop Smoking Services. Addict Behav2013;38:2529-31. [PMID: 23773961] doi:10.1016/j.addbeh.2013.04.006 CrossrefMedlineGoogle Scholar
    • 25. Jacob PWilson MBenowitz NLImproved gas chromatographic method for the determination of nicotine and cotinine in biologic fluids. J Chromatogr1981;222:61-70. [PMID: 6783675] CrossrefMedlineGoogle Scholar
    • 26. Jacob PYu LWilson MBenowitz NLSelected ion monitoring method for determination of nicotine, cotinine and deuterium-labeled analogs: absence of an isotope effect in the clearance of (S)-nicotine-3',3'-d2 in humans. Biol Mass Spectrom1991;20:247-52. [PMID: 1883864] CrossrefMedlineGoogle Scholar
    • 27. McGuffey JEWei BBernert JTMorrow JCXia BWang Let alValidation of a LC-MS/MS method for quantifying urinary nicotine, six nicotine metabolites and the minor tobacco alkaloids—anatabine and anabasine—in smokers' urine. PLoS One2014;9:e101816. [PMID: 25013964] doi:10.1371/journal.pone.0101816 CrossrefMedlineGoogle Scholar
    • 28. Wei BFeng JRehmani IJMiller SMcGuffey JEBlount BCet alA high-throughput robotic sample preparation system and HPLC-MS/MS for measuring urinary anatabine, anabasine, nicotine and major nicotine metabolites. Clin Chim Acta2014;436:290-7. [PMID: 24968308] doi:10.1016/j.cca.2014.06.012 CrossrefMedlineGoogle Scholar
    • 29. Xia BXia YWong JNicodemus KJXu MLee Jet alQuantitative analysis of five tobacco-specific N-nitrosamines in urine by liquid chromatography-atmospheric pressure ionization tandem mass spectrometry. Biomed Chromatogr2014;28:375-84. [PMID: 24127240] doi:10.1002/bmc.3031 CrossrefMedlineGoogle Scholar
    • 30. Alwis KUBlount BCBritt ASPatel DAshley DLSimultaneous analysis of 28 urinary VOC metabolites using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS). Anal Chim Acta2012;750:152-60. [PMID: 23062436] doi:10.1016/j.aca.2012.04.009 CrossrefMedlineGoogle Scholar
    • 31. Fowles JDybing EApplication of toxicological risk assessment principles to the chemical constituents of cigarette smoke. Tob Control2003;12:424-30. [PMID: 14660781] CrossrefMedlineGoogle Scholar
    • 32. Haussmann HJUse of hazard indices for a theoretical evaluation of cigarette smoke composition. Chem Res Toxicol2012;25:794-810. [PMID: 22352345] doi:10.1021/tx200536w CrossrefMedlineGoogle Scholar
    • 33. Burns DMDybing EGray NHecht SAnderson CSanner Tet alMandated lowering of toxicants in cigarette smoke: a description of the World Health Organization TobReg proposal. Tob Control2008;17:132-41. [PMID: 18375736] doi:10.1136/tc.2007.024158 CrossrefMedlineGoogle Scholar
    • 34. International Agency for Research on CancerIARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 83. Lyon, France: International Agency for Research on Cancer; 2004. Google Scholar
    • 35. Smith CJLivingston SDDoolittle DJAn international literature survey of “IARC Group I carcinogens” reported in mainstream cigarette smoke. Food Chem Toxicol1997;35:1107-30. [PMID: 9463546] CrossrefMedlineGoogle Scholar
    • 36. International Agency for Research on CancerIARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 89. Lyon, France: International Agency for Research on Cancer; 2007. Google Scholar
    • 37. Hecht SSTobacco smoke carcinogens and lung cancer. J Natl Cancer Inst1999;91:1194-210. [PMID: 10413421] CrossrefMedlineGoogle Scholar
    • 38. International Agency for Research on CancerIARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 63. Lyon, France: International Agency for Research on Cancer; 1995. Google Scholar
    • 39. International Agency for Research on CancerIARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 100F. Lyon, France: International Agency for Research on Cancer; 2012. Google Scholar
    • 40. Shahab LWest RDifferences in happiness between smokers, ex-smokers and never smokers: cross-sectional findings from a national household survey. Drug Alcohol Depend2012;121:38-44. [PMID: 21906891] doi:10.1016/j.drugalcdep.2011.08.011 CrossrefMedlineGoogle Scholar
    • 41. Ouellet-Morin IDanese AWilliams BArseneault LValidation of a high-sensitivity assay for C-reactive protein in human saliva. Brain Behav Immun2011;25:640-6. [PMID: 21236331] doi:10.1016/j.bbi.2010.12.020 CrossrefMedlineGoogle Scholar
    • 42. Stepanov ISebero EWang RGao YTHecht SSYuan JMTobacco-specific N-nitrosamine exposures and cancer risk in the Shanghai Cohort Study: remarkable coherence with rat tumor sites. Int J Cancer2014;134:2278-83. [PMID: 24243522] doi:10.1002/ijc.28575 CrossrefMedlineGoogle Scholar
    • 43. Kraemer HCKupfer DJSize of treatment effects and their importance to clinical research and practice. Biol Psychiatry2006;59:990-6. [PMID: 16368078] CrossrefMedlineGoogle Scholar
    • 44. Faul FErdfelder ELang AGBuchner AG*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods2007;39:175-91. [PMID: 17695343] CrossrefMedlineGoogle Scholar
    • 45. O'Brien KMUpson KCook NRWeinberg CREnvironmental chemicals in urine and blood: improving methods for creatinine and lipid adjustment. Environ Health Perspect2016;124:220-7. [PMID: 26219104] doi:10.1289/ehp.1509693 CrossrefMedlineGoogle Scholar
    • 46. Benjamini YHochberg YControlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol1995;57:289-300. CrossrefGoogle Scholar
    • 47. Hornung RReed LEstimation of average concentration in the presence of nondetectable values. Appl Occup Environ Hyg1990;5:46-51. CrossrefGoogle Scholar
    • 48. Dillon MCOpris DCKopanczyk RLickliter JCornwell HNBridges EGet alDetection of homocysteine and C-reactive protein in the saliva of healthy adults: comparison with blood levels. Biomark Insights2010;5:57-61. [PMID: 20703322] CrossrefMedlineGoogle Scholar
    • 49. Malaiyandi VSellers EMTyndale RFImplications of CYP2A6 genetic variation for smoking behaviors and nicotine dependence. Clin Pharmacol Ther2005;77:145-58. [PMID: 15735609] CrossrefMedlineGoogle Scholar
    • 50. Fagerström KOTejding RWestin ALunell EAiding reduction of smoking with nicotine replacement medications: hope for the recalcitrant smoker? Tob Control1997;6:311-6. [PMID: 9583629] CrossrefMedlineGoogle Scholar
    • 51. Dawkins LCorcoran OAcute electronic cigarette use: nicotine delivery and subjective effects in regular users. Psychopharmacology (Berl)2014;231:401-7. [PMID: 23978909] doi:10.1007/s00213-013-3249-8 CrossrefMedlineGoogle Scholar
    • 52. Farsalinos KESpyrou ATsimopoulou KStefopoulos CRomagna GVoudris VNicotine absorption from electronic cigarette use: comparison between first and new-generation devices. Sci Rep2014;4:4133. [PMID: 24569565] doi:10.1038/srep04133 CrossrefMedlineGoogle Scholar
    • 53. Shahab LDobbie FHiscock RMcNeill ABauld LPrevalence and impact of long-term use of nicotine replacement therapy in UK Stop-Smoking Services: findings from the ELONS study. Nicotine Tob Res2016. [PMID: 27664995] doi:10.1093/ntr/ntw258 CrossrefMedlineGoogle Scholar
    • 54. Shahab LBeard EBrown JWest RPrevalence of NRT use and associated nicotine intake in smokers, recent ex-smokers and longer-term ex-smokers. PLoS One2014;9:e113045. [PMID: 25405343] doi:10.1371/journal.pone.0113045 CrossrefMedlineGoogle Scholar
    • 55. Bullen CHowe CLaugesen MMcRobbie HParag VWilliman Jet alElectronic cigarettes for smoking cessation: a randomised controlled trial. Lancet2013;382:1629-37. [PMID: 24029165] doi:10.1016/S0140-6736(13)61842-5 CrossrefMedlineGoogle Scholar
    • 56. Rose JESalley ABehm FMBates JEWestman ECReinforcing effects of nicotine and non-nicotine components of cigarette smoke. Psychopharmacology (Berl)2010;210:1-12. [PMID: 20358364] doi:10.1007/s00213-010-1810-2 CrossrefMedlineGoogle Scholar
    • 57. Shields PGLong-term nicotine replacement therapy: cancer risk in context. Cancer Prev Res (Phila)2011;4:1719-23. [PMID: 22052338] doi:10.1158/1940-6207.CAPR-11-0453 CrossrefMedlineGoogle Scholar
    • 58. Farsalinos KEGillman IGMelvin MSPaolantonio ARGardow WJHumphries KEet alNicotine levels and presence of selected tobacco-derived toxins in tobacco flavoured electronic cigarette refill liquids. Int J Environ Res Public Health2015;12:3439-52. [PMID: 25811768] doi:10.3390/ijerph120403439 CrossrefMedlineGoogle Scholar
    • 59. Schraufnagel DEBlasi FDrummond MBLam DCLatif ERosen MJet alForum of International Respiratory SocietiesElectronic cigarettes. A position statement of the forum of international respiratory societies. Am J Respir Crit Care Med2014;190:611-8. [PMID: 25006874] doi:10.1164/rccm.201407-1198PP CrossrefMedlineGoogle Scholar
    • 60. Kampa MCastanas EHuman health effects of air pollution. Environ Pollut2008;151:362-7. [PMID: 17646040] CrossrefMedlineGoogle Scholar
    • 61. Farsalinos KEPolosa RSafety evaluation and risk assessment of electronic cigarettes as tobacco cigarette substitutes: a systematic review. Ther Adv Drug Saf2014;5:67-86. [PMID: 25083263] doi:10.1177/2042098614524430 CrossrefMedlineGoogle Scholar
    • 62. McNeill ABrose LSCalder RHitchman SHajek PMcRobbie HE-cigarettes: An Evidence Update. London: Public Health England; 2015. Google Scholar
    • 63. Burstyn IPeering through the mist: systematic review of what the chemistry of contaminants in electronic cigarettes tells us about health risks. BMC Public Health2014;14:18. [PMID: 24406205] doi:10.1186/1471-2458-14-18 CrossrefMedlineGoogle Scholar
    • 64. Jacob PHatsukami DSeverson HHall SYu LBenowitz NLAnabasine and anatabine as biomarkers for tobacco use during nicotine replacement therapy. Cancer Epidemiol Biomarkers Prev2002;11:1668-73. [PMID: 12496059] MedlineGoogle Scholar
    • 65. Jain RBDistributions of selected urinary metabolites of volatile organic compounds by age, gender, race/ethnicity, and smoking status in a representative sample of U.S. adults. Environ Toxicol Pharmacol2015;40:471-9. [PMID: 26282484] doi:10.1016/j.etap.2015.07.018 CrossrefMedlineGoogle Scholar
    • 66. Stepanov ICarmella SGBriggs AHertsgaard LLindgren BHatsukami Det alPresence of the carcinogen N'-nitrosonornicotine in the urine of some users of oral nicotine replacement therapy products. Cancer Res2009;69:8236-40. [PMID: 19843845] doi:10.1158/0008-5472.CAN-09-1084 CrossrefMedlineGoogle Scholar
    • 67. Weaver VMBuckley TGroopman JDLack of specificity of trans,trans-muconic acid as a benzene biomarker after ingestion of sorbic acid-preserved foods. Cancer Epidemiol Biomarkers Prev2000;9:749-55. [PMID: 10919747] MedlineGoogle Scholar
    • 68. Cohen JTCarlson GCharnley GCoggon DDelzell EGraham JDet alA comprehensive evaluation of the potential health risks associated with occupational and environmental exposure to styrene. J Toxicol Environ Health B Crit Rev2002;5:1-265. [PMID: 12012775] CrossrefMedlineGoogle Scholar
    • 69. Farsalinos KEVoudris VPoulas KE-cigarettes generate high levels of aldehydes only in ‘dry puff' conditions. Addiction2015;110:1352-6. [PMID: 25996087] doi:10.1111/add.12942 CrossrefMedlineGoogle Scholar
    • 70. Brown JWest RBeard EMichie SShahab LMcNeill APrevalence and characteristics of e-cigarette users in Great Britain: findings from a general population survey of smokers. Addict Behav2014;39:1120-5. [PMID: 24679611] doi:10.1016/j.addbeh.2014.03.009 CrossrefMedlineGoogle Scholar