Screening for Type 2 Diabetes Mellitus: A Systematic Review for the U.S. Preventive Services Task ForceFREE
Submit a Comment
Contributors must reveal any conflict of interest. Comments are moderated. Please see our information for authorsregarding comments on an Annals publication.
Abstract
Background:
Purpose:
Data Sources:
Study Selection:
Data Extraction:
Data Synthesis:
Limitation:
Conclusion:
Primary Funding Source:
Methods
Scope of the Review
Data Sources and Searches
Study Selection
Data Abstraction and Quality Rating
Data Synthesis and Analysis
Role of the Funding Source
Results
Benefits of Screening
Harms of Screening
Benefits of Treating Screen-Detected or Early Diabetes, IFG, or IGT
Harms of Treating Screen-Detected or Early Diabetes, IFG, or IGT
Benefits of More-Intensive Treatment Versus Standard Treatment
Harms of More-Intensive Treatment Versus Standard Treatment
Benefits of Treatment in IFG or IGT on the Delay or Prevention of Progression to Diabetes
Lifestyle Interventions
Pharmacologic Interventions
Multifactorial Interventions
Discussion
References
Comments
Sign In to Submit A CommentInformation & Authors
Information
Published In
History
Keywords
Authors
Metrics & Citations
Metrics
Citations
If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. For an editable text file, please select Medlars format which will download as a .txt file. Simply select your manager software from the list below and click Download.
For more information or tips please see 'Downloading to a citation manager' in the Help menu.
Screening for Type 2 Diabetes Mellitus: A Systematic Review for the U.S. Preventive Services Task Force. Ann Intern Med.2015;162:765-776. [Epub 2 June 2015]. doi:10.7326/M14-2221
View More
Login Options:
Purchase
You will be redirected to acponline.org to sign-in to Annals to complete your purchase.
Access to EPUBs and PDFs for FREE Annals content requires users to be registered and logged in. A subscription is not required. You can create a free account below or from the following link. You will be redirected to acponline.org to create an account that will provide access to Annals. If you are accessing the Free Annals content via your institution's access, registration is not required.
Create your Free Account
You will be redirected to acponline.org to create an account that will provide access to Annals.
Earliest detection of T2DM in asymptomatic individuals is vital
Firstly, the review concluded that screening and earliest detection of type 2 diabetes in asymptomatic individuals did not have any positive effect in reducing mortality at 10-yeras follow up and more evidence is required for the effectiveness of the treatment of screen-detected diabetic patients. That means that we, the physicians should not screen asymptomatic individuals for hyperglycemia.
I cannot support this component of your conclusion. What is the real picture in my practice setting? I routinely screen at least one test HbA1C for all adult who come to me as a patient for the first time. Around 50% of all adults tested, found HbA1C >7%. A significant number of adults without any signs of hyperglycemia have HbA1C even more than 10%. Repeated testing of HbA1C along with FPG and or glucose challenge tests confirms their diagnosis of T2DM. Most of the patients with hyperglycemia remain asymptomatic unless they are either at hyperosmolar state or hypoglycemic coma; incidences of such states are not so high. Asymptomatic patients with hyperglycemia are at high risk specifically of microvascular complications. Most patients come with peripheral neuropathic pain, change of vision or micro or macro-albuminuria in routine urine testing. Further testing confirms T2DM in most of these patients. I have number of normotensive patients suffering from stable angina, having symptoms of peripheral arterial disease, screening of whom confirms diagnosis of T2DM which means both micro and macrovascular diseases develop before diagnosis of T2DM. Literature show that beta cell dysfunction occur even a decade before the diagnosis of overt T2DM. Earliest detection of T2DM may prevent progression of vascular complications. This review showed that no decrease of mortality was found as a result of earliest detection of T2DM in asymptomatic individuals but we can prevent comorbidities.
Now the question is, once T2DM is detected by screening, how to treat these patients? It depends upon the severity of hyperglycemia and presence of vascular complications. Why we should go for acarbose, rosiglitazone or nateglinide? These agents have well known for adverse effects. According to severity, along with lifestyle modification we can start with metformin, or DPP-4 inhibitors. If required, safer sulfonylureas like glimepiride or even insulin can be administered. I think all adults even in the absence of risk factors should be screened for T2DM preferably by at least HbA1C which may not reduce mortality but definitely will reduce morbidity.
Secondly, the review has given good evidence that treatment of IGT and IFG reduces progression to overt diabetes. Literature shows that lifestyle modification only can reduce progression from prediabetes to overt diabetes by 60%. Number of studies proved that drugs like metformin or even insulin glargine (ORIGIN trial) may prevent progression to overt diabetes. Microvascular comlications are commonly found at this state. To find the population on prediabetic state (either IGT or IFG) we need to screen asymptomatic adults.
Screening Cannot Improve Outcomes Unless Treatment is Effective
To date, although there is strong evidence that improved glycemic control in T2D will reduce or delay the progression of microvascular disease, studies of macrovascular events conducted over decades in T2D patients have failed to show the same beneficial effect . The authors presume that a short duration observation looking at cardiovascular events and mortality can answer the question of relative screening benefits. It is clear that treatment of diabetes reduces or prolongs time to blindness and end stage renal disease . While loss of vision or renal function may be considered softer end-points by some, they are far more debilitating for our patients. Failure to screen patients for diabetes even in asymptomatic individuals creates a harm that is not imagined in this paper. It is also clear that treatment of impaired fasting glucose or impaired glucose tolerance prolongs the time until complications of diabetes.
As statistical analyses and meta-analyses become more highly complicated and populations studied and morbid/mortal events more limited, study results may derive lesser benefits and may inadvertently create risk of harm. Such harm may be magnified if results are inappropriately generalized; morbid/mortal events are limited to one system, unfocussed or underpowered. We believe this task force review is one such example.
References:
Selph S, Dana T, Blazina I, Bougatsos C, Patel H, Chou R. Screening for type 2 diabetes mellitus: a systematic review for the U.S. Preventive services task force. Ann Intern Med. 2015;162(11):765-76.
Emerging Risk Factors Collaboration, Seshasai SR, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, Whincup PH, Mukamal KJ, Gillum RF, Holme I, Njølstad I, Fletcher A, Nilsson P, Lewington S, Collins R, Gudnason V, Thompson SG, Sattar N, Selvin E, Hu FB, Danesh J.Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364(9):829-41.
Ray KK, Seshasai SR, Wijesuriya S, Sivakumaran R, Nethercott S, Preiss D, Erqou S, Sattar N. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet. 2009;373(9677):1765-72.
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837-53.
In response to Drs Barkoudah and Weinrauch
Shelley Selph, MD, MPH
Blazina I, MPH
Roger Chou, MD
References:
Selph S, Dana T, Blazina I, Bougatsos C, Patel H, Chou R. Screening for type 2 diabetes mellitus: a systematic review for the U.S. Preventive services task force. Ann Intern Med. 2015;162(11):765-76.
Simmons R, Echouffo-Tcheugui J, Sharp S, Sargeant L, Williams K, Prevost A, Kinmonth A, Wareham N, Griffin S. Screening for type 2 diabetes and population mortality over 10 years (ADDITION-Cambridge): a cluster-randomized controlled trial. Lancet. 2012;380(9855):1741-1748.
Li P, Zhang P, Wang J, An Y, Gong Q, Gregg W, Yang W, Zhang B, Shaui Y, Hong J, Engelgau M, Li H, Roglic G, Hu Y, Bennett P. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: a 23-year follow-up study. Lancet Diabetes & Endocrinology. 2014;2(6):474-480.
Rossouw J, Anderson G, Prentice R, LaCroix A, Kooperberg C, Stafanick M, Jackson R, Beresford S, Howard B, Johnson K, Kotchen J, Ockene J. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women’s health initiative randomized controlled trial. JAMA. 2002;288(3):321-333.