Research and Reporting Methods
21 January 2014

Net Reclassification Improvement: Computation, Interpretation, and Controversies: A Literature Review and Clinician's Guide

Publication: Annals of Internal Medicine
Volume 160, Number 2

Abstract

The net reclassification improvement (NRI) is an increasingly popular measure for evaluating improvements in risk predictions. This article details a review of 67 publications in high-impact general clinical journals that considered the NRI. Incomplete reporting of NRI methods, incorrect calculation, and common misinterpretations were found. To aid improved applications of the NRI, the article elaborates on several aspects of the computation and interpretation in various settings. Limitations and controversies are discussed, including the effect of miscalibration of prediction models, the use of the continuous NRI and “clinical NRI,” and the relation with decision analytic measures. A systematic approach toward presenting NRI analysis is proposed: Detail and motivate the methods used for computation of the NRI, use clinically meaningful risk cutoffs for the category-based NRI, report both NRI components, address issues of calibration, and do not interpret the overall NRI as a percentage of the study population reclassified. Promising NRI findings need to be followed with decision analytic or formal cost-effectiveness evaluations.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Kannel WBDawber TRKagan ARevotskie NStokes J 3rd. Factors of risk in the development of coronary heart disease—six year follow-up experience. The Framingham Study. Ann Intern Med. 1961;55:33-50. [PMID: 13751193]
2.
Expert Panel on Detection, EvaluationTreatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001;285:2486-97. [PMID: 11368702]
3.
Perk JDe Backer GGohlke HGraham IReiner ZVerschuren Met alEuropean Association for Cardiovascular Prevention & Rehabilitation (EACPR). European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur Heart J. 2012;33:1635-701. [PMID: 22555213]
4.
Hamm CWBassand JPAgewall SBax JBoersma EBueno Het alESC Committee for Practice Guidelines. ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2011;32:2999-3054. [PMID: 21873419]
5.
Visvanathan KChlebowski RTHurley PCol NFRopka MCollyar Det alAmerican Society of Clinical Oncology. American Society of Clinical Oncology clinical practice guideline update on the use of pharmacologic interventions including tamoxifen, raloxifene, and aromatase inhibition for breast cancer risk reduction. J Clin Oncol. 2009;27:3235-58. [PMID: 19470930]
6.
Munshi NCAnderson KCBergsagel PLShaughnessy JPalumbo ADurie Bet alInternational Myeloma Workshop Consensus Panel 2. Consensus recommendations for risk stratification in multiple myeloma: report of the International Myeloma Workshop Consensus Panel 2. Blood. 2011;117:4696-700. [PMID: 21292777]
7.
Worth LJLingaratnam STaylor AHayward AMMorrissey SCooney Jet alAustralian Consensus Guidelines 2011 Steering Committee. Use of risk stratification to guide ambulatory management of neutropenic fever. Australian Consensus Guidelines 2011 Steering Committee. Intern Med J. 2011;41:82-9. [PMID: 21272172]
8.
Bates SMJaeschke RStevens SMGoodacre SWells PSStevenson MDet alAmerican College of Chest Physicians. Diagnosis of DVT: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141:351S-418S. [PMID: 22315267]
9.
Pepe MSJanes HLongton GLeisenring WNewcomb P. Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am J Epidemiol. 2004;159:882-90. [PMID: 15105181]
10.
Cook NR. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation. 2007;115:928-35. [PMID: 17309939]
11.
Pencina MJD'Agostino RBPencina KMJanssens ACJWGreenland P. Interpreting incremental value of markers added to risk prediction models. Am J Epidemiol. 2012;176:473-81. [PMID: 22875755]
12.
Austin PCSteyerberg EW. Predictive accuracy of risk factors and markers: a simulation study of the effect of novel markers on different performance measures for logistic regression models. Stat Med. 2013;32:661-72. [PMID: 22961910]
13.
Hlatky MAGreenland PArnett DKBallantyne CMCriqui MHElkind MSVet alAmerican Heart Association Expert Panel on Subclinical Atherosclerotic Diseases and Emerging Risk Factors and the Stroke Council. Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation. 2009;119:2408-16. [PMID: 19364974]
14.
Cook NRBuring JERidker PM. The effect of including C-reactive protein in cardiovascular risk prediction models for women. Ann Intern Med. 2006;145:21-9. [PMID: 16818925]
15.
Pencina MJD'Agostino RB SrD'Agostino RB JrVasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27:157-72. [PMID: 17569110]
16.
Tzoulaki ILiberopoulos GIoannidis JPA. Use of reclassification for assessment of improved prediction: an empirical evaluation. Int J Epidemiol. 2011;40:1094-105. [PMID: 21325392]
17.
Leening MJGSteyerberg EW. Fibrosis and mortality in patients with dilated cardiomyopathy [Letter]. JAMA. 2013;309:2547-8. [PMID: 23800926]
18.
Lilford RJRichardson AStevens AFitzpatrick REdwards SRock Fet al. Issues in methodological research: perspectives from researchers and commissioners. Health Technol Assess. 2001;5:1-57. [PMID: 11368832]
19.
Pencina MJD'Agostino RBVasan RS. Statistical methods for assessment of added usefulness of new biomarkers. Clin Chem Lab Med. 2010;48:1703-11. [PMID: 20716010]
20.
Pencina MJD'Agostino RB SrSteyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011;30:11-21. [PMID: 21204120]
21.
Pencina MJD'Agostino RB SrDemler OV. Novel metrics for evaluating improvement in discrimination: net reclassification and integrated discrimination improvement for normal variables and nested models. Stat Med. 2012;31:101-13. [PMID: 22147389]
22.
Cook NRRidker PM. Advances in measuring the effect of individual predictors of cardiovascular risk: the role of reclassification measures. Ann Intern Med. 2009;150:795-802. [PMID: 19487714]
23.
Adabag ASTherneau TMGersh BJWeston SARoger VL. Sudden death after myocardial infarction. JAMA. 2008;300:2022-9. [PMID: 18984889]
24.
Auer RBauer DCMarques-Vidal PButler JMin LJCornuz Jet alHealth ABC Study. Association of major and minor ECG abnormalities with coronary heart disease events. JAMA. 2012;307:1497-505. [PMID: 22496264]
25.
Breteler MMB. Mapping out biomarkers for Alzheimer disease [Editorial]. JAMA. 2011;305:304-5. [PMID: 21245188]
26.
Buckley DIFu RFreeman MRogers KHelfand M. C-reactive protein as a risk factor for coronary heart disease: a systematic review and meta-analyses for the U.S. Preventive Services Task Force. Ann Intern Med. 2009;151:483-95. [PMID: 19805771]
27.
Chou RArora BDana TFu RWalker MHumphrey L. Screening asymptomatic adults with resting or exercise electrocardiography: a review of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med. 2011;155:375-85. [PMID: 21930855]
28.
Cook NR. Biomarkers for prediction of cardiovascular events [Letter]. JAMA. 2009;302:2089. [PMID: 19920231]
29.
Cornelis MCQi LZhang CKraft PManson JCai Tet al. Joint effects of common genetic variants on the risk for type 2 diabetes in U.S. men and women of European ancestry. Ann Intern Med. 2009;150:541-50. [PMID: 19380854]
30.
de Boer IHLevin GRobinson-Cohen CBiggs MLHoofnagle ANSiscovick DSet al. Serum 25-hydroxyvitamin D concentration and risk for major clinical disease events in a community-based population of older adults: a cohort study. Ann Intern Med. 2012;156:627-34. [PMID: 22547472]
31.
de Lemos JADrazner MHOmland TAyers CRKhera ARohatgi Aet al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA. 2010;304:2503-12. [PMID: 21139111]
32.
deFilippi CRde Lemos JAChristenson RHGottdiener JSKop WJZhan Met al. Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA. 2010;304:2494-502. [PMID: 21078811]
33.
den Ruijter HMPeters SAEAnderson TJBritton ARDekker JMEijkemans MJet al. Common carotid intima-media thickness measurements in cardiovascular risk prediction: a meta-analysis. JAMA. 2012;308:796-803. [PMID: 22910757]
34.
Devereaux PJChan MTVAlonso-Coello PWalsh MBerwanger OVillar JCet alVascular Events In Noncardiac Surgery Patients Cohort Evaluation (VISION) Study Investigators. Association between postoperative troponin levels and 30-day mortality among patients undergoing noncardiac surgery. JAMA. 2012;307:2295-304. [PMID: 22706835]
35.
Di Angelantonio EGao PPennells LKaptoge SCaslake MThompson Aet alEmerging Risk Factors Collaboration. Lipid-related markers and cardiovascular disease prediction. JAMA. 2012;307:2499-506. [PMID: 22797450]
36.
Eddy DMAdler JPatterson BLucas DSmith KAMorris M. Individualized guidelines: the potential for increasing quality and reducing costs. Ann Intern Med. 2011;154:627-34. [PMID: 21536939]
37.
Farooq Vvan Klaveren DSteyerberg EWMeliga EVergouwe YChieffo Aet al. Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX Score II. Lancet. 2013;381:639-50. [PMID: 23439103]
38.
Fonarow GCPan WSaver JLSmith EEReeves MJBroderick JPet al. Comparison of 30-day mortality models for profiling hospital performance in acute ischemic stroke with vs without adjustment for stroke severity. JAMA. 2012;308:257-64. [PMID: 22797643]
39.
Gulati AJabbour AIsmail TFGuha KKhwaja JRaza Set al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA. 2013;309:896-908. [PMID: 23462786]
40.
Helfand MBuckley DIFreeman MFu RRogers KFleming Cet al. Emerging risk factors for coronary heart disease: a summary of systematic reviews conducted for the U.S. Preventive Services Task Force. Ann Intern Med. 2009;151:496-507. [PMID: 19805772]
41.
Hingorani ADPsaty BM. Primary prevention of cardiovascular disease: time to get more or less personal? JAMA. 2009;302:2144-5. [PMID: 19920239]
42.
Hlatky MA. Framework for evaluating novel risk markers [Editorial]. Ann Intern Med. 2012;156:468-9. [PMID: 22431679]
43.
Janes HPepe MSGu W. Assessing the value of risk predictions by using risk stratification tables. Ann Intern Med. 2008;149:751-60. [PMID: 19017593]
44.
Janssens ACJWIoannidis JPAvan Duijn CMLittle JKhoury MJGRIPS Group. Strengthening the reporting of genetic risk prediction studies: The GRIPS Statement. Ann Intern Med. 2011;154:421-5. [PMID: 21403077]
45.
Kaptoge SDi Angelantonio ELowe GPepys MBThompson SGCollins Ret alEmerging Risk Factors Collaboration. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 2010;375:132-40. [PMID: 20031199]
46.
Kaptoge SDi Angelantonio EPennells LWood AMWhite IRGao Pet alEmerging Risk Factors Collaboration. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med. 2012;367:1310-20. [PMID: 23034020]
47.
Kathiresan SMelander OAnevski DGuiducci CBurtt NPRoos Cet al. Polymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med. 2008;358:1240-9. [PMID: 18354102]
48.
Kavousi MElias-Smale SRutten JHWLeening MJGVliegenthart RVerwoert GCet al. Evaluation of newer risk markers for coronary heart disease risk classification: a cohort study. Ann Intern Med. 2012;156:438-44. [PMID: 22431676]
49.
Keller TZeller TOjeda FTzikas SLillpopp LSinning Cet al. Serial changes in highly sensitive troponin I assay and early diagnosis of myocardial infarction. JAMA. 2011;306:2684-93. [PMID: 22203537]
50.
Kengne APEchouffo-Tcheugui JBSobngwi E. Coronary artery calcium for guiding statin treatment [Letter]. Lancet. 2012;379:312. [PMID: 22284653]
51.
Khera AVCuchel Mde la Llera-Moya MRodrigues ABurke MFJafri Ket al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364:127-35. [PMID: 21226578]
52.
Kim WRBiggins SWKremers WKWiesner RHKamath PSBenson JTet al. Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med. 2008;359:1018-26. [PMID: 18768945]
53.
Kivimäki MBatty GDHamer MFerrie JEVahtera JVirtanen Met al. Using additional information on working hours to predict coronary heart disease: a cohort study. Ann Intern Med. 2011;154:457-63. [PMID: 21464347]
54.
Koller MTLeening MJGWolbers MSteyerberg EWHunink MGMSchoop Ret al. Development and validation of a coronary risk prediction model for older U.S. and European persons in the Cardiovascular Health Study and the Rotterdam Study. Ann Intern Med. 2012;157:389-97. [PMID: 22986376]
55.
Lubitz SAYin XFontes JDMagnani JWRienstra MPai Met al. Association between familial atrial fibrillation and risk of new-onset atrial fibrillation. JAMA. 2010;304:2263-9. [PMID: 21076174]
56.
Lyssenko VJonsson AAlmgren PPulizzi NIsomaa BTuomi Tet al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med. 2008;359:2220-32. [PMID: 19020324]
57.
Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363:166-76. [PMID: 20647212]
58.
Martínez METhompson PMesser KAshbeck ELLieberman DABaron JAet al. One-year risk for advanced colorectal neoplasia: U.S. versus U.K. risk-stratification guidelines. Ann Intern Med. 2012;157:856-64. [PMID: 23247939]
59.
Matsushita KMahmoodi BKWoodward MEmberson JRJafar THJee SHet alChronic Kidney Disease Prognosis Consortium. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA. 2012;307:1941-51. [PMID: 22570462]
60.
McEvoy JW. Coronary artery calcium score and cardiovascular event prediction [Letter]. JAMA. 2010;304:741-2. [PMID: 20716732]
61.
Meigs JBShrader PSullivan LMMcAteer JBFox CSDupuis Jet al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med. 2008;359:2208-19. [PMID: 19020323]
62.
Melander ONewton-Cheh CAlmgren PHedblad BBerglund GEngström Get al. Novel and conventional biomarkers for prediction of incident cardiovascular events in the community. JAMA. 2009;302:49-57. [PMID: 19567439]
63.
Melander ONewton-Cheh CWang TJ. Biomarkers for prediction of cardiovascular events—reply. JAMA. 2009;302:2090.
64.
Omland Tde Lemos JASabatine MSChristophi CARice MMJablonski KAet alPrevention of Events with Angiotensin Converting Enzyme Inhibition (PEACE) Trial Investigators. A sensitive cardiac troponin T assay in stable coronary artery disease. N Engl J Med. 2009;361:2538-47. [PMID: 19940289]
65.
Palomaki GEMelillo SBradley LA. Association between 9p21 genomic markers and heart disease: a meta-analysis. JAMA. 2010;303:648-56. [PMID: 20159873]
66.
Paynter NPChasman DIBuring JEShiffman DCook NRRidker PM. Cardiovascular disease risk prediction with and without knowledge of genetic variation at chromosome 9p21.3. Ann Intern Med. 2009;150:65-72. [PMID: 19153409]
67.
Paynter NPChasman DIParé GBuring JECook NRMiletich JPet al. Association between a literature-based genetic risk score and cardiovascular events in women. JAMA. 2010;303:631-7. [PMID: 20159871]
68.
Peralta CAShlipak MGJudd SCushman MMcClellan WZakai NAet al. Detection of chronic kidney disease with creatinine, cystatin C, and urine albumin-to-creatinine ratio and association with progression to end-stage renal disease and mortality. JAMA. 2011;305:1545-52. [PMID: 21482744]
69.
Pischon TBoeing HHoffmann KBergmann MSchulze MBOvervad Ket al. General and abdominal adiposity and risk of death in Europe. N Engl J Med. 2008;359:2105-20. [PMID: 19005195]
70.
Pletcher MJTice JAPignone M. Modeling cardiovascular disease prevention [Letter]. JAMA. 2010;303:835. [PMID: 20197528]
71.
Polak JFPencina MJPencina KMO'Donnell CJWolf PAD'Agostino RB Sr. Carotid-wall intima-media thickness and cardiovascular events. N Engl J Med. 2011;365:213-21. [PMID: 21774709]
72.
Polonsky TSMcClelland RLJorgensen NWBild DEBurke GLGuerci ADet al. Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA. 2010;303:1610-6. [PMID: 20424251]
73.
Ripatti STikkanen EOrho-Melander MHavulinna ASSilander KSharma Aet al. A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet. 2010;376:1393-400. [PMID: 20971364]
74.
Rosenberg SElashoff MRBeineke PDaniels SEWingrove JATingley WGet alPREDICT (Personalized Risk Evaluation and Diagnosis in the Coronary Tree) Investigators. Multicenter validation of the diagnostic accuracy of a blood-based gene expression test for assessing obstructive coronary artery disease in nondiabetic patients. Ann Intern Med. 2010;153:425-34. [PMID: 20921541]
75.
Schelbert EBCao JJSigurdsson SAspelund TKellman PAletras AHet al. Prevalence and prognosis of unrecognized myocardial infarction determined by cardiac magnetic resonance in older adults. JAMA. 2012;308:890-6. [PMID: 22948699]
76.
Schnabel RBSullivan LMLevy DPencina MJMassaro JMD'Agostino RB Sret al. Development of a risk score for atrial fibrillation (Framingham Heart Study): a community-based cohort study. Lancet. 2009;373:739-45. [PMID: 19249635]
77.
Selvin ESteffes MWZhu HMatsushita KWagenknecht LPankow Jet al. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med. 2010;362:800-11. [PMID: 20200384]
78.
Steyerberg EWPencina MJ. Reclassification calculations for persons with incomplete follow-up [Letter]. Ann Intern Med. 2010;152:195-6. [PMID: 20124243]
79.
Tammemägi MCKatki HAHocking WGChurch TRCaporaso NKvale PAet al. Selection criteria for lung-cancer screening. N Engl J Med. 2013;368:728-36. [PMID: 23425165]
80.
Tangri NStevens LAGriffith JTighiouart HDjurdjev ONaimark Det al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA. 2011;305:1553-9. [PMID: 21482743]
81.
Tzoulaki ILiberopoulos GIoannidis JPA. Assessment of claims of improved prediction beyond the Framingham risk score. JAMA. 2009;302:2345-52. [PMID: 19952321]
82.
Wacholder SHartge PPrentice RGarcia-Closas MFeigelson HSDiver WRet al. Performance of common genetic variants in breast-cancer risk models. N Engl J Med. 2010;362:986-93. [PMID: 20237344]
83.
Wilson PWF. Challenges to improve coronary heart disease risk assessment [Editorial]. JAMA. 2009;302:2369-70. [PMID: 19952326]
84.
Wormser DKaptoge SDi Angelantonio EWood AMPennells LThompson Aet alEmerging Risk Factors Collaboration. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet. 2011;377:1085-95. [PMID: 21397319]
85.
Wormser DDi Angelantonio ESattar NCollins RThompson SDanesh Jet al. Body-mass index, abdominal adiposity, and cardiovascular risk - reply. Lancet. 2011;378:228.
86.
Yeboah JMcClelland RLPolonsky TSBurke GLSibley CTO'Leary Det al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA. 2012;308:788-95. [PMID: 22910756]
87.
Zethelius BBerglund LSundström JIngelsson EBasu SLarsson Aet al. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med. 2008;358:2107-16. [PMID: 18480203]
88.
Zoungas SPatel AChalmers Jde Galan BELi QBillot Let alADVANCE Collaborative Group. Severe hypoglycemia and risks of vascular events and death. N Engl J Med. 2010;363:1410-8. [PMID: 20925543]
89.
Greenland PAlpert JSBeller GABenjamin EJBudoff MJFayad ZAet alAmerican College of Cardiology FoundationAmerican Heart Association Task Force on Practice Guidelines. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2010;122:584-636. [PMID: 21098428]
90.
Mosca LBenjamin EJBerra KBezanson JLDolor RJLloyd-Jones DMet al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update: a guideline from the American Heart Association. Circulation. 2011;123:1243-62. [PMID: 21325087]
91.
Cai TTian LLloyd-Jones DM. Comparing costs associated with risk stratification rules for t-year survival. Biostatistics. 2011;12:597-609. [PMID: 21415016]
92.
Leening MJGCook NR. Net reclassification improvement: a link between statistics and clinical practice. Eur J Epidemiol. 2013;28:21-3. [PMID: 23291877]
93.
Pepe MS. Problems with risk reclassification methods for evaluating prediction models. Am J Epidemiol. 2011;173:1327-35. [PMID: 21555714]
94.
Mihaescu Rvan Zitteren Mvan Hoek MSijbrands EJUitterlinden AGWitteman JCMet al. Improvement of risk prediction by genomic profiling: reclassification measures versus the area under the receiver operating characteristic curve. Am J Epidemiol. 2010;172:353-61. [PMID: 20562194]
95.
Mühlenbruch KHeraclides ASteyerberg EWJoost HGBoeing HSchulze MB. Assessing improvement in disease prediction using net reclassification improvement: impact of risk cut-offs and number of risk categories. Eur J Epidemiol. 2013;28:25-33. [PMID: 23179629]
96.
Pepe MSJanes H. Commentary: Reporting standards are needed for evaluations of risk reclassification. Int J Epidemiol. 2011;40:1106-8. [PMID: 21571811]
97.
McGeechan KMacaskill PIrwig LLiew GWong TY. Assessing new biomarkers and predictive models for use in clinical practice: a clinician's guide. Arch Intern Med. 2008;168:2304-10. [PMID: 19029492]
98.
Greenland S. The need for reorientation toward cost-effective prediction: comments on ‘Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond’ by M. J. Pencina et al., Statistics in Medicine (DOI: 10.1002/sim.2929). Stat Med. 2008;27:199-206. [PMID: 17729377] doi: 10.1002/sim.2929)
99.
Cook NRPaynter NP. Performance of reclassification statistics in comparing risk prediction models. Biom J. 2011;53:237-58. [PMID: 21294152]
100.
National Cholesterol Education Program (NCEP) Expert Panel on Detection, EvaluationTreatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143-421. [PMID: 12485966]
101.
Cook NRPaynter NPEaton CBManson JEMartin LWRobinson JGet al. Comparison of the Framingham and Reynolds Risk scores for global cardiovascular risk prediction in the multiethnic Women's Health Initiative. Circulation. 2012;125:1748-56, S1-11. [PMID: 22399535]
102.
Pencina MJD'Agostino RB SrLarson MGMassaro JMVasan RS. Predicting the 30-year risk of cardiovascular disease: the Framingham Heart Study. Circulation. 2009;119:3078-84. [PMID: 19506114]
103.
Takahara MKatakami NKaneto HShimomura I. Risk categorization for calculating net reclassification improvement [Letter]. Eur J Epidemiol. 2013;28:607-9. [PMID: 23839540]
104.
Ganna AReilly Mde Faire UPedersen NMagnusson PIngelsson E. Risk prediction measures for case-cohort and nested case-control designs: an application to cardiovascular disease. Am J Epidemiol. 2012;175:715-24. [PMID: 22396388]
105.
Pepe MSFan JSeymour CWLi CHuang YFeng Z. Biases introduced by choosing controls to match risk factors of cases in biomarker research. Clin Chem. 2012;58:1242-51. [PMID: 22730452]
106.
Rothman KJGreenland SLash TL. Modern Epidemiology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008.
107.
Kavousi MLeening MJGWitteman JCM. Markers for prediction of cardiovascular disease risk [Letter]. JAMA. 2012;308:2561. [PMID: 23268505]
108.
Pencina MJD'Agostino RB SrD'Agostino RB JrVasan RS. Comments on ‘Integrated discrimination and net reclassification improvements—Practical advice’. Stat Med. 2008;27:207-12. [PMID: 17569110]
109.
Pepe MSFeng ZGu JW. Comments on ‘Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond’ by M. J. Pencina et al., Statistics in Medicine (DOI: 10.1002/sim.2929). Stat Med. 2008;27:173-81. [PMID: 17671958] doi: 10.1002/sim.2929)
110.
Hilden JGerds TA. A note on the evaluation of novel biomarkers: do not rely on integrated discrimination improvement and net reclassification index. Stat Med. 2013;:. [PMID: 23553436]
111.
Brindle PEmberson JLampe FWalker MWhincup PFahey Tet al. Predictive accuracy of the Framingham coronary risk score in British men: prospective cohort study. BMJ. 2003;327:1267. [PMID: 14644971]
112.
Hense HWSchulte HLöwel HAssmann GKeil U. Framingham risk function overestimates risk of coronary heart disease in men and women from Germany—results from the MONICA Augsburg and the PROCAM cohorts. Eur Heart J. 2003;24:937-45. [PMID: 12714025]
113.
Koller MTSteyerberg EWWolbers MStijnen TBucher HCHunink MGMet al. Validity of the Framingham point scores in the elderly: results from the Rotterdam study. Am Heart J. 2007;154:87-93. [PMID: 17584559]
114.
Merry AHBoer JMSchouten LJAmbergen TSteyerberg EWFeskens EJMet al. Risk prediction of incident coronary heart disease in The Netherlands: re-estimation and improvement of the SCORE risk function. Eur J Prev Cardiol. 2012;19:840-8. [PMID: 21551214]
115.
Siontis GCMTzoulaki ISiontis KCIoannidis JPA. Comparisons of established risk prediction models for cardiovascular disease: systematic review. BMJ. 2012;344:3318. [PMID: 22628003]
116.
Steyerberg EW. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating. New York: Springer; 2009.
117.
Kramer AAZimmerman JE. Assessing the calibration of mortality benchmarks in critical care: The Hosmer-Lemeshow test revisited. Crit Care Med. 2007;35:2052-6. [PMID: 17568333]
118.
Cox DR. Two further applications of a model for binary regression. Biometrika. 1958;45:562-5.
119.
Cook NRPaynter NP. Comments on ‘Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers’ by M. J. Pencina, R. B. D'Agostino, Sr. and E. W. Steyerberg [Letter]. Stat Med. 2012;31:93-5. [PMID: 21344474]
120.
Vergouwe YMoons KGMSteyerberg EW. External validity of risk models: Use of benchmark values to disentangle a case-mix effect from incorrect coefficients. Am J Epidemiol. 2010;172:971-80. [PMID: 20807737]
121.
Cook NR. Comments on ‘Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond’ by M. J. Pencina et al., Statistics in Medicine (DOI: 10.1002/sim.2929). Stat Med. 2008;27:191-5. [PMID: 17671959] doi: 10.1002/sim.2929)
122.
Paynter NPCook NR. A bias-corrected net reclassification improvement for clinical subgroups. Med Decis Making. 2013;33:154-62. [PMID: 23042826]
123.
Vickers AJElkin EBSteyerberg E. Net reclassification improvement and decision theory [Letter]. Stat Med. 2009;28:525-6. [PMID: 17907248]
124.
Van Calster BVickers AJPencina MJBaker SGTimmerman DSteyerberg EW. Evaluation of markers and risk prediction models: overview of relationships between NRI and decision-analytic measures. Med Decis Making. 2013;33:490-501. [PMID: 23313931]
125.
Localio ARGoodman S. Beyond the usual prediction accuracy metrics: reporting results for clinical decision making [Editorial]. Ann Intern Med. 2012;157:294-5. [PMID: 22910942]
126.
Steyerberg EWVickers AJCook NRGerds TGonen MObuchowski Net al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010;21:128-38. [PMID: 20010215]
127.
Vickers AJElkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making. 2006;26:565-74. [PMID: 17099194]
128.
Vickers AJCronin AMBegg CB. One statistical test is sufficient for assessing new predictive markers. BMC Med Res Methodol. 2011;11:13. [PMID: 21276237]
129.
Pepe MSKerr KFLongton GWang Z. Testing for improvement in prediction model performance. Stat Med. 2013;32:1467-82. [PMID: 23296397]
130.
McGeechan KLiew GMacaskill PIrwig LKlein RSharrett ARet al. Risk prediction of coronary heart disease based on retinal vascular caliber (from the Atherosclerosis Risk In Communities [ARIC] Study). Am J Cardiol. 2008;102:58-63. [PMID: 18572036]

Comments

0 Comments
Sign In to Submit A Comment

Information & Authors

Information

Published In

cover image Annals of Internal Medicine
Annals of Internal Medicine
Volume 160Number 221 January 2014
Pages: 122 - 131

History

Published online: 21 January 2014
Published in issue: 21 January 2014

Keywords

Authors

Affiliations

Maarten J.G. Leening, MD, MSc
From Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands, and Duke University, Durham, North Carolina.
Moniek M. Vedder, MSc
From Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands, and Duke University, Durham, North Carolina.
Jacqueline C.M. Witteman, PhD
From Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands, and Duke University, Durham, North Carolina.
Michael J. Pencina, PhD
From Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands, and Duke University, Durham, North Carolina.
Ewout W. Steyerberg, PhD
From Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands, and Duke University, Durham, North Carolina.
Grant Support: By the Netherlands Organisation for Health Research and Development (ZonMw) and the Netherlands Organisation for Scientific Research (NWO) (ZonMw HTA grant 80-82500-98-10208; Vici grant 918-76-619) and the Center for Translational Molecular Medicine (PCMM project grant). The funding sources had no role in the design or conduct of the study; the collection, management, analysis, or interpretation of the data; or the preparation, review, or approval of the manuscript.
Corresponding Author: Maarten J.G. Leening, MD, MSc, Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands; e-mail, [email protected].
Current Author Addresses: Drs. Leening and Witteman: Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Dr. Molenwaterplein 50, 3015 GE Rotterdam, the Netherlands.
Ms. Vedder and Dr. Steyerberg: Department of Public Health, Erasmus MC - University Medical Center Rotterdam, Dr. Molenwaterplein 50, 3015 GE Rotterdam, the Netherlands.
Dr. Pencina: Department of Biostatistics and Bioinformatics, Duke Clinical Research Institute, Duke University, 2400 Pratt Street, Durham, NC 27715.
Author Contributions: Conception and design: M.J.G. Leening, E.W. Steyerberg.
Analysis and interpretation of the data: M.J.G. Leening, M.M. Vedder, E.W. Steyerberg.
Drafting of the article: M.J.G. Leening.
Critical revision of the article for important intellectual content: M.J.G. Leening, M.M. Vedder, J.C.M. Witteman, M.J. Pencina, E.W. Steyerberg.
Final approval of the article: M.J.G. Leening, M.M. Vedder, J.C.M. Witteman, M.J. Pencina, E.W. Steyerberg.
Statistical expertise: M.J.G. Leening, M.J. Pencina, E.W. Steyerberg.
Obtaining of funding: E.W. Steyerberg.
Administrative, technical, or logistic support: M.J.G. Leening.
Collection and assembly of data: M.J.G. Leening, M.M. Vedder.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. For an editable text file, please select Medlars format which will download as a .txt file. Simply select your manager software from the list below and click Download.

For more information or tips please see 'Downloading to a citation manager' in the Help menu.

Format





Download article citation data for:
Maarten J.G. Leening, Moniek M. Vedder, Jacqueline C.M. Witteman, et al. Net Reclassification Improvement: Computation, Interpretation, and Controversies: A Literature Review and Clinician's Guide. Ann Intern Med.2014;160:122-131. [Epub 21 January 2014]. doi:10.7326/M13-1522

View More

Login Options:
Purchase

You will be redirected to acponline.org to sign-in to Annals to complete your purchase.

Access to EPUBs and PDFs for FREE Annals content requires users to be registered and logged in. A subscription is not required. You can create a free account below or from the following link. You will be redirected to acponline.org to create an account that will provide access to Annals. If you are accessing the Free Annals content via your institution's access, registration is not required.

Create your Free Account

You will be redirected to acponline.org to create an account that will provide access to Annals.

View options

PDF/EPUB

View PDF/EPUB

Related in ACP Journals

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share on social media