Research and Reporting Methods21 January 2014
A Literature Review and Clinician's Guide
    Author, Article, and Disclosure Information

    Abstract

    The net reclassification improvement (NRI) is an increasingly popular measure for evaluating improvements in risk predictions. This article details a review of 67 publications in high-impact general clinical journals that considered the NRI. Incomplete reporting of NRI methods, incorrect calculation, and common misinterpretations were found. To aid improved applications of the NRI, the article elaborates on several aspects of the computation and interpretation in various settings. Limitations and controversies are discussed, including the effect of miscalibration of prediction models, the use of the continuous NRI and “clinical NRI,” and the relation with decision analytic measures. A systematic approach toward presenting NRI analysis is proposed: Detail and motivate the methods used for computation of the NRI, use clinically meaningful risk cutoffs for the category-based NRI, report both NRI components, address issues of calibration, and do not interpret the overall NRI as a percentage of the study population reclassified. Promising NRI findings need to be followed with decision analytic or formal cost-effectiveness evaluations.

    References

    • 1. Kannel WBDawber TRKagan ARevotskie NStokes JFactors of risk in the development of coronary heart disease—six year follow-up experience. The Framingham Study. Ann Intern Med1961;55:33-50. [PMID: 13751193] LinkGoogle Scholar
    • 2. Expert Panel on Detection, EvaluationTreatment of High Blood Cholesterol in AdultsExecutive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA2001;285:2486-97. [PMID: 11368702] CrossrefMedlineGoogle Scholar
    • 3. Perk JDe Backer GGohlke HGraham IReiner ZVerschuren Met alEuropean Association for Cardiovascular Prevention & Rehabilitation (EACPR)European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur Heart J2012;33:1635-701. [PMID: 22555213] MedlineGoogle Scholar
    • 4. Hamm CWBassand JPAgewall SBax JBoersma EBueno Het alESC Committee for Practice GuidelinesESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J2011;32:2999-3054. [PMID: 21873419] CrossrefMedlineGoogle Scholar
    • 5. Visvanathan KChlebowski RTHurley PCol NFRopka MCollyar Det alAmerican Society of Clinical OncologyAmerican Society of Clinical Oncology clinical practice guideline update on the use of pharmacologic interventions including tamoxifen, raloxifene, and aromatase inhibition for breast cancer risk reduction. J Clin Oncol2009;27:3235-58. [PMID: 19470930] CrossrefMedlineGoogle Scholar
    • 6. Munshi NCAnderson KCBergsagel PLShaughnessy JPalumbo ADurie Bet alInternational Myeloma Workshop Consensus Panel 2Consensus recommendations for risk stratification in multiple myeloma: report of the International Myeloma Workshop Consensus Panel 2. Blood2011;117:4696-700. [PMID: 21292777] CrossrefMedlineGoogle Scholar
    • 7. Worth LJLingaratnam STaylor AHayward AMMorrissey SCooney Jet alAustralian Consensus Guidelines 2011 Steering CommitteeUse of risk stratification to guide ambulatory management of neutropenic fever. Australian Consensus Guidelines 2011 Steering Committee. Intern Med J2011;41:82-9. [PMID: 21272172] CrossrefMedlineGoogle Scholar
    • 8. Bates SMJaeschke RStevens SMGoodacre SWells PSStevenson MDet alAmerican College of Chest PhysiciansDiagnosis of DVT: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest2012;141:351S-418S. [PMID: 22315267] CrossrefMedlineGoogle Scholar
    • 9. Pepe MSJanes HLongton GLeisenring WNewcomb PLimitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am J Epidemiol2004;159:882-90. [PMID: 15105181] CrossrefMedlineGoogle Scholar
    • 10. Cook NRUse and misuse of the receiver operating characteristic curve in risk prediction. Circulation2007;115:928-35. [PMID: 17309939] CrossrefMedlineGoogle Scholar
    • 11. Pencina MJD'Agostino RBPencina KMJanssens ACJWGreenland PInterpreting incremental value of markers added to risk prediction models. Am J Epidemiol2012;176:473-81. [PMID: 22875755] CrossrefMedlineGoogle Scholar
    • 12. Austin PCSteyerberg EWPredictive accuracy of risk factors and markers: a simulation study of the effect of novel markers on different performance measures for logistic regression models. Stat Med2013;32:661-72. [PMID: 22961910] CrossrefMedlineGoogle Scholar
    • 13. Hlatky MAGreenland PArnett DKBallantyne CMCriqui MHElkind MSVet alAmerican Heart Association Expert Panel on Subclinical Atherosclerotic Diseases and Emerging Risk Factors and the Stroke CouncilCriteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation2009;119:2408-16. [PMID: 19364974] CrossrefMedlineGoogle Scholar
    • 14. Cook NRBuring JERidker PMThe effect of including C-reactive protein in cardiovascular risk prediction models for women. Ann Intern Med2006;145:21-9. [PMID: 16818925] LinkGoogle Scholar
    • 15. Pencina MJD'Agostino RBD'Agostino RBVasan RSEvaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med2008;27:157-72. [PMID: 17569110] CrossrefMedlineGoogle Scholar
    • 16. Tzoulaki ILiberopoulos GIoannidis JPAUse of reclassification for assessment of improved prediction: an empirical evaluation. Int J Epidemiol2011;40:1094-105. [PMID: 21325392] CrossrefMedlineGoogle Scholar
    • 17. Leening MJGSteyerberg EWFibrosis and mortality in patients with dilated cardiomyopathy [Letter]. JAMA2013;309:2547-8. [PMID: 23800926] CrossrefMedlineGoogle Scholar
    • 18. Lilford RJRichardson AStevens AFitzpatrick REdwards SRock Fet alIssues in methodological research: perspectives from researchers and commissioners. Health Technol Assess2001;5:1-57. [PMID: 11368832] CrossrefMedlineGoogle Scholar
    • 19. Pencina MJD'Agostino RBVasan RSStatistical methods for assessment of added usefulness of new biomarkers. Clin Chem Lab Med2010;48:1703-11. [PMID: 20716010] CrossrefMedlineGoogle Scholar
    • 20. Pencina MJD'Agostino RBSteyerberg EWExtensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med2011;30:11-21. [PMID: 21204120] CrossrefMedlineGoogle Scholar
    • 21. Pencina MJD'Agostino RBDemler OVNovel metrics for evaluating improvement in discrimination: net reclassification and integrated discrimination improvement for normal variables and nested models. Stat Med2012;31:101-13. [PMID: 22147389] CrossrefMedlineGoogle Scholar
    • 22. Cook NRRidker PMAdvances in measuring the effect of individual predictors of cardiovascular risk: the role of reclassification measures. Ann Intern Med2009;150:795-802. [PMID: 19487714] LinkGoogle Scholar
    • 23. Adabag ASTherneau TMGersh BJWeston SARoger VLSudden death after myocardial infarction. JAMA2008;300:2022-9. [PMID: 18984889] CrossrefMedlineGoogle Scholar
    • 24. Auer RBauer DCMarques-Vidal PButler JMin LJCornuz Jet alHealth ABC StudyAssociation of major and minor ECG abnormalities with coronary heart disease events. JAMA2012;307:1497-505. [PMID: 22496264] CrossrefMedlineGoogle Scholar
    • 25. Breteler MMBMapping out biomarkers for Alzheimer disease [Editorial]. JAMA2011;305:304-5. [PMID: 21245188] CrossrefMedlineGoogle Scholar
    • 26. Buckley DIFu RFreeman MRogers KHelfand MC-reactive protein as a risk factor for coronary heart disease: a systematic review and meta-analyses for the U.S. Preventive Services Task Force. Ann Intern Med2009;151:483-95. [PMID: 19805771] LinkGoogle Scholar
    • 27. Chou RArora BDana TFu RWalker MHumphrey LScreening asymptomatic adults with resting or exercise electrocardiography: a review of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med2011;155:375-85. [PMID: 21930855] LinkGoogle Scholar
    • 28. Cook NRBiomarkers for prediction of cardiovascular events [Letter]. JAMA2009;302:2089. [PMID: 19920231] CrossrefMedlineGoogle Scholar
    • 29. Cornelis MCQi LZhang CKraft PManson JCai Tet alJoint effects of common genetic variants on the risk for type 2 diabetes in U.S. men and women of European ancestry. Ann Intern Med2009;150:541-50. [PMID: 19380854] LinkGoogle Scholar
    • 30. de Boer IHLevin GRobinson-Cohen CBiggs MLHoofnagle ANSiscovick DSet alSerum 25-hydroxyvitamin D concentration and risk for major clinical disease events in a community-based population of older adults: a cohort study. Ann Intern Med2012;156:627-34. [PMID: 22547472] LinkGoogle Scholar
    • 31. de Lemos JADrazner MHOmland TAyers CRKhera ARohatgi Aet alAssociation of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA2010;304:2503-12. [PMID: 21139111] CrossrefMedlineGoogle Scholar
    • 32. deFilippi CRde Lemos JAChristenson RHGottdiener JSKop WJZhan Met alAssociation of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA2010;304:2494-502. [PMID: 21078811] CrossrefMedlineGoogle Scholar
    • 33. den Ruijter HMPeters SAEAnderson TJBritton ARDekker JMEijkemans MJet alCommon carotid intima-media thickness measurements in cardiovascular risk prediction: a meta-analysis. JAMA2012;308:796-803. [PMID: 22910757] CrossrefMedlineGoogle Scholar
    • 34. Devereaux PJChan MTVAlonso-Coello PWalsh MBerwanger OVillar JCet alVascular Events In Noncardiac Surgery Patients Cohort Evaluation (VISION) Study InvestigatorsAssociation between postoperative troponin levels and 30-day mortality among patients undergoing noncardiac surgery. JAMA2012;307:2295-304. [PMID: 22706835] CrossrefMedlineGoogle Scholar
    • 35. Di Angelantonio EGao PPennells LKaptoge SCaslake MThompson Aet alEmerging Risk Factors CollaborationLipid-related markers and cardiovascular disease prediction. JAMA2012;307:2499-506. [PMID: 22797450] MedlineGoogle Scholar
    • 36. Eddy DMAdler JPatterson BLucas DSmith KAMorris MIndividualized guidelines: the potential for increasing quality and reducing costs. Ann Intern Med2011;154:627-34. [PMID: 21536939] LinkGoogle Scholar
    • 37. Farooq Vvan Klaveren DSteyerberg EWMeliga EVergouwe YChieffo Aet alAnatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX Score II. Lancet2013;381:639-50. [PMID: 23439103] CrossrefMedlineGoogle Scholar
    • 38. Fonarow GCPan WSaver JLSmith EEReeves MJBroderick JPet alComparison of 30-day mortality models for profiling hospital performance in acute ischemic stroke with vs without adjustment for stroke severity. JAMA2012;308:257-64. [PMID: 22797643] CrossrefMedlineGoogle Scholar
    • 39. Gulati AJabbour AIsmail TFGuha KKhwaja JRaza Set alAssociation of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA2013;309:896-908. [PMID: 23462786] CrossrefMedlineGoogle Scholar
    • 40. Helfand MBuckley DIFreeman MFu RRogers KFleming Cet alEmerging risk factors for coronary heart disease: a summary of systematic reviews conducted for the U.S. Preventive Services Task Force. Ann Intern Med2009;151:496-507. [PMID: 19805772] LinkGoogle Scholar
    • 41. Hingorani ADPsaty BMPrimary prevention of cardiovascular disease: time to get more or less personal? JAMA2009;302:2144-5. [PMID: 19920239] CrossrefMedlineGoogle Scholar
    • 42. Hlatky MAFramework for evaluating novel risk markers [Editorial]. Ann Intern Med2012;156:468-9. [PMID: 22431679] LinkGoogle Scholar
    • 43. Janes HPepe MSGu WAssessing the value of risk predictions by using risk stratification tables. Ann Intern Med2008;149:751-60. [PMID: 19017593] LinkGoogle Scholar
    • 44. Janssens ACJWIoannidis JPAvan Duijn CMLittle JKhoury MJGRIPS GroupStrengthening the reporting of genetic risk prediction studies: The GRIPS Statement. Ann Intern Med2011;154:421-5. [PMID: 21403077] LinkGoogle Scholar
    • 45. Kaptoge SDi Angelantonio ELowe GPepys MBThompson SGCollins Ret alEmerging Risk Factors CollaborationC-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet2010;375:132-40. [PMID: 20031199] CrossrefMedlineGoogle Scholar
    • 46. Kaptoge SDi Angelantonio EPennells LWood AMWhite IRGao Pet alEmerging Risk Factors CollaborationC-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med2012;367:1310-20. [PMID: 23034020] CrossrefMedlineGoogle Scholar
    • 47. Kathiresan SMelander OAnevski DGuiducci CBurtt NPRoos Cet alPolymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med2008;358:1240-9. [PMID: 18354102] CrossrefMedlineGoogle Scholar
    • 48. Kavousi MElias-Smale SRutten JHWLeening MJGVliegenthart RVerwoert GCet alEvaluation of newer risk markers for coronary heart disease risk classification: a cohort study. Ann Intern Med2012;156:438-44. [PMID: 22431676] LinkGoogle Scholar
    • 49. Keller TZeller TOjeda FTzikas SLillpopp LSinning Cet alSerial changes in highly sensitive troponin I assay and early diagnosis of myocardial infarction. JAMA2011;306:2684-93. [PMID: 22203537] CrossrefMedlineGoogle Scholar
    • 50. Kengne APEchouffo-Tcheugui JBSobngwi ECoronary artery calcium for guiding statin treatment [Letter]. Lancet2012;379:312. [PMID: 22284653] CrossrefMedlineGoogle Scholar
    • 51. Khera AVCuchel Mde la Llera-Moya MRodrigues ABurke MFJafri Ket alCholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med2011;364:127-35. [PMID: 21226578] CrossrefMedlineGoogle Scholar
    • 52. Kim WRBiggins SWKremers WKWiesner RHKamath PSBenson JTet alHyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med2008;359:1018-26. [PMID: 18768945] CrossrefMedlineGoogle Scholar
    • 53. Kivimäki MBatty GDHamer MFerrie JEVahtera JVirtanen Met alUsing additional information on working hours to predict coronary heart disease: a cohort study. Ann Intern Med2011;154:457-63. [PMID: 21464347] LinkGoogle Scholar
    • 54. Koller MTLeening MJGWolbers MSteyerberg EWHunink MGMSchoop Ret alDevelopment and validation of a coronary risk prediction model for older U.S. and European persons in the Cardiovascular Health Study and the Rotterdam Study. Ann Intern Med2012;157:389-97. [PMID: 22986376] LinkGoogle Scholar
    • 55. Lubitz SAYin XFontes JDMagnani JWRienstra MPai Met alAssociation between familial atrial fibrillation and risk of new-onset atrial fibrillation. JAMA2010;304:2263-9. [PMID: 21076174] CrossrefMedlineGoogle Scholar
    • 56. Lyssenko VJonsson AAlmgren PPulizzi NIsomaa BTuomi Tet alClinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med2008;359:2220-32. [PMID: 19020324] CrossrefMedlineGoogle Scholar
    • 57. Manolio TAGenomewide association studies and assessment of the risk of disease. N Engl J Med2010;363:166-76. [PMID: 20647212] CrossrefMedlineGoogle Scholar
    • 58. Martínez METhompson PMesser KAshbeck ELLieberman DABaron JAet alOne-year risk for advanced colorectal neoplasia: U.S. versus U.K. risk-stratification guidelines. Ann Intern Med2012;157:856-64. [PMID: 23247939] LinkGoogle Scholar
    • 59. Matsushita KMahmoodi BKWoodward MEmberson JRJafar THJee SHet alChronic Kidney Disease Prognosis ConsortiumComparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA2012;307:1941-51. [PMID: 22570462] CrossrefMedlineGoogle Scholar
    • 60. McEvoy JWCoronary artery calcium score and cardiovascular event prediction [Letter]. JAMA2010;304:741-2. [PMID: 20716732] CrossrefMedlineGoogle Scholar
    • 61. Meigs JBShrader PSullivan LMMcAteer JBFox CSDupuis Jet alGenotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med2008;359:2208-19. [PMID: 19020323] CrossrefMedlineGoogle Scholar
    • 62. Melander ONewton-Cheh CAlmgren PHedblad BBerglund GEngström Get alNovel and conventional biomarkers for prediction of incident cardiovascular events in the community. JAMA2009;302:49-57. [PMID: 19567439] CrossrefMedlineGoogle Scholar
    • 63. Melander ONewton-Cheh CWang TJBiomarkers for prediction of cardiovascular events—reply. JAMA2009;302:2090. MedlineGoogle Scholar
    • 64. Omland Tde Lemos JASabatine MSChristophi CARice MMJablonski KAet alPrevention of Events with Angiotensin Converting Enzyme Inhibition (PEACE) Trial InvestigatorsA sensitive cardiac troponin T assay in stable coronary artery disease. N Engl J Med2009;361:2538-47. [PMID: 19940289] CrossrefMedlineGoogle Scholar
    • 65. Palomaki GEMelillo SBradley LAAssociation between 9p21 genomic markers and heart disease: a meta-analysis. JAMA2010;303:648-56. [PMID: 20159873] CrossrefMedlineGoogle Scholar
    • 66. Paynter NPChasman DIBuring JEShiffman DCook NRRidker PMCardiovascular disease risk prediction with and without knowledge of genetic variation at chromosome 9p21.3. Ann Intern Med2009;150:65-72. [PMID: 19153409] LinkGoogle Scholar
    • 67. Paynter NPChasman DIParé GBuring JECook NRMiletich JPet alAssociation between a literature-based genetic risk score and cardiovascular events in women. JAMA2010;303:631-7. [PMID: 20159871] CrossrefMedlineGoogle Scholar
    • 68. Peralta CAShlipak MGJudd SCushman MMcClellan WZakai NAet alDetection of chronic kidney disease with creatinine, cystatin C, and urine albumin-to-creatinine ratio and association with progression to end-stage renal disease and mortality. JAMA2011;305:1545-52. [PMID: 21482744] CrossrefMedlineGoogle Scholar
    • 69. Pischon TBoeing HHoffmann KBergmann MSchulze MBOvervad Ket alGeneral and abdominal adiposity and risk of death in Europe. N Engl J Med2008;359:2105-20. [PMID: 19005195] CrossrefMedlineGoogle Scholar
    • 70. Pletcher MJTice JAPignone MModeling cardiovascular disease prevention [Letter]. JAMA2010;303:835. [PMID: 20197528] CrossrefMedlineGoogle Scholar
    • 71. Polak JFPencina MJPencina KMO'Donnell CJWolf PAD'Agostino RBCarotid-wall intima-media thickness and cardiovascular events. N Engl J Med2011;365:213-21. [PMID: 21774709] CrossrefMedlineGoogle Scholar
    • 72. Polonsky TSMcClelland RLJorgensen NWBild DEBurke GLGuerci ADet alCoronary artery calcium score and risk classification for coronary heart disease prediction. JAMA2010;303:1610-6. [PMID: 20424251] CrossrefMedlineGoogle Scholar
    • 73. Ripatti STikkanen EOrho-Melander MHavulinna ASSilander KSharma Aet alA multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet2010;376:1393-400. [PMID: 20971364] CrossrefMedlineGoogle Scholar
    • 74. Rosenberg SElashoff MRBeineke PDaniels SEWingrove JATingley WGet alPREDICT (Personalized Risk Evaluation and Diagnosis in the Coronary Tree) InvestigatorsMulticenter validation of the diagnostic accuracy of a blood-based gene expression test for assessing obstructive coronary artery disease in nondiabetic patients. Ann Intern Med2010;153:425-34. [PMID: 20921541] LinkGoogle Scholar
    • 75. Schelbert EBCao JJSigurdsson SAspelund TKellman PAletras AHet alPrevalence and prognosis of unrecognized myocardial infarction determined by cardiac magnetic resonance in older adults. JAMA2012;308:890-6. [PMID: 22948699] CrossrefMedlineGoogle Scholar
    • 76. Schnabel RBSullivan LMLevy DPencina MJMassaro JMD'Agostino RBet alDevelopment of a risk score for atrial fibrillation (Framingham Heart Study): a community-based cohort study. Lancet2009;373:739-45. [PMID: 19249635] CrossrefMedlineGoogle Scholar
    • 77. Selvin ESteffes MWZhu HMatsushita KWagenknecht LPankow Jet alGlycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med2010;362:800-11. [PMID: 20200384] CrossrefMedlineGoogle Scholar
    • 78. Steyerberg EWPencina MJReclassification calculations for persons with incomplete follow-up [Letter]. Ann Intern Med2010;152:195-6. [PMID: 20124243] LinkGoogle Scholar
    • 79. Tammemägi MCKatki HAHocking WGChurch TRCaporaso NKvale PAet alSelection criteria for lung-cancer screening. N Engl J Med2013;368:728-36. [PMID: 23425165] CrossrefMedlineGoogle Scholar
    • 80. Tangri NStevens LAGriffith JTighiouart HDjurdjev ONaimark Det alA predictive model for progression of chronic kidney disease to kidney failure. JAMA2011;305:1553-9. [PMID: 21482743] CrossrefMedlineGoogle Scholar
    • 81. Tzoulaki ILiberopoulos GIoannidis JPAAssessment of claims of improved prediction beyond the Framingham risk score. JAMA2009;302:2345-52. [PMID: 19952321] CrossrefMedlineGoogle Scholar
    • 82. Wacholder SHartge PPrentice RGarcia-Closas MFeigelson HSDiver WRet alPerformance of common genetic variants in breast-cancer risk models. N Engl J Med2010;362:986-93. [PMID: 20237344] CrossrefMedlineGoogle Scholar
    • 83. Wilson PWFChallenges to improve coronary heart disease risk assessment [Editorial]. JAMA2009;302:2369-70. [PMID: 19952326] CrossrefMedlineGoogle Scholar
    • 84. Wormser DKaptoge SDi Angelantonio EWood AMPennells LThompson Aet alEmerging Risk Factors CollaborationSeparate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet2011;377:1085-95. [PMID: 21397319] CrossrefMedlineGoogle Scholar
    • 85. Wormser DDi Angelantonio ESattar NCollins RThompson SDanesh Jet alBody-mass index, abdominal adiposity, and cardiovascular risk - reply. Lancet2011;378:228. CrossrefGoogle Scholar
    • 86. Yeboah JMcClelland RLPolonsky TSBurke GLSibley CTO'Leary Det alComparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA2012;308:788-95. [PMID: 22910756] CrossrefMedlineGoogle Scholar
    • 87. Zethelius BBerglund LSundström JIngelsson EBasu SLarsson Aet alUse of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med2008;358:2107-16. [PMID: 18480203] CrossrefMedlineGoogle Scholar
    • 88. Zoungas SPatel AChalmers Jde Galan BELi QBillot Let alADVANCE Collaborative GroupSevere hypoglycemia and risks of vascular events and death. N Engl J Med2010;363:1410-8. [PMID: 20925543] CrossrefMedlineGoogle Scholar
    • 89. Greenland PAlpert JSBeller GABenjamin EJBudoff MJFayad ZAet alAmerican College of Cardiology FoundationAmerican Heart Association Task Force on Practice Guidelines2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation2010;122:584-636. [PMID: 21098428] MedlineGoogle Scholar
    • 90. Mosca LBenjamin EJBerra KBezanson JLDolor RJLloyd-Jones DMet alEffectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update: a guideline from the American Heart Association. Circulation2011;123:1243-62. [PMID: 21325087] CrossrefMedlineGoogle Scholar
    • 91. Cai TTian LLloyd-Jones DMComparing costs associated with risk stratification rules for t-year survival. Biostatistics2011;12:597-609. [PMID: 21415016] CrossrefMedlineGoogle Scholar
    • 92. Leening MJGCook NRNet reclassification improvement: a link between statistics and clinical practice. Eur J Epidemiol2013;28:21-3. [PMID: 23291877] CrossrefMedlineGoogle Scholar
    • 93. Pepe MSProblems with risk reclassification methods for evaluating prediction models. Am J Epidemiol2011;173:1327-35. [PMID: 21555714] CrossrefMedlineGoogle Scholar
    • 94. Mihaescu Rvan Zitteren Mvan Hoek MSijbrands EJUitterlinden AGWitteman JCMet alImprovement of risk prediction by genomic profiling: reclassification measures versus the area under the receiver operating characteristic curve. Am J Epidemiol2010;172:353-61. [PMID: 20562194] CrossrefMedlineGoogle Scholar
    • 95. Mühlenbruch KHeraclides ASteyerberg EWJoost HGBoeing HSchulze MBAssessing improvement in disease prediction using net reclassification improvement: impact of risk cut-offs and number of risk categories. Eur J Epidemiol2013;28:25-33. [PMID: 23179629] CrossrefMedlineGoogle Scholar
    • 96. Pepe MSJanes HCommentary: Reporting standards are needed for evaluations of risk reclassification. Int J Epidemiol2011;40:1106-8. [PMID: 21571811] CrossrefMedlineGoogle Scholar
    • 97. McGeechan KMacaskill PIrwig LLiew GWong TYAssessing new biomarkers and predictive models for use in clinical practice: a clinician's guide. Arch Intern Med2008;168:2304-10. [PMID: 19029492] CrossrefMedlineGoogle Scholar
    • 98. Greenland SThe need for reorientation toward cost-effective prediction: comments on ‘Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond’ by M. J. Pencina et al., Statistics in Medicine (DOI: 10.1002/sim.2929). Stat Med2008;27:199-206. [PMID: 17729377] MedlineGoogle Scholar
    • 99. Cook NRPaynter NPPerformance of reclassification statistics in comparing risk prediction models. Biom J2011;53:237-58. [PMID: 21294152] CrossrefMedlineGoogle Scholar
    • 100. National Cholesterol Education Program (NCEP) Expert Panel on Detection, EvaluationTreatment of High Blood Cholesterol in Adults (Adult Treatment Panel III)Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation2002;106:3143-421. [PMID: 12485966] CrossrefMedlineGoogle Scholar
    • 101. Cook NRPaynter NPEaton CBManson JEMartin LWRobinson JGet alComparison of the Framingham and Reynolds Risk scores for global cardiovascular risk prediction in the multiethnic Women's Health Initiative. Circulation2012;125:1748-56, S1-11. [PMID: 22399535] CrossrefMedlineGoogle Scholar
    • 102. Pencina MJD'Agostino RBLarson MGMassaro JMVasan RSPredicting the 30-year risk of cardiovascular disease: the Framingham Heart Study. Circulation2009;119:3078-84. [PMID: 19506114] CrossrefMedlineGoogle Scholar
    • 103. Takahara MKatakami NKaneto HShimomura IRisk categorization for calculating net reclassification improvement [Letter]. Eur J Epidemiol2013;28:607-9. [PMID: 23839540] CrossrefMedlineGoogle Scholar
    • 104. Ganna AReilly Mde Faire UPedersen NMagnusson PIngelsson ERisk prediction measures for case-cohort and nested case-control designs: an application to cardiovascular disease. Am J Epidemiol2012;175:715-24. [PMID: 22396388] CrossrefMedlineGoogle Scholar
    • 105. Pepe MSFan JSeymour CWLi CHuang YFeng ZBiases introduced by choosing controls to match risk factors of cases in biomarker research. Clin Chem2012;58:1242-51. [PMID: 22730452] CrossrefMedlineGoogle Scholar
    • 106. Rothman KJGreenland SLash TLModern Epidemiology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008. Google Scholar
    • 107. Kavousi MLeening MJGWitteman JCMMarkers for prediction of cardiovascular disease risk [Letter]. JAMA2012;308:2561. [PMID: 23268505] CrossrefMedlineGoogle Scholar
    • 108. Pencina MJD'Agostino RBD'Agostino RBVasan RSComments on ‘Integrated discrimination and net reclassification improvements—Practical advice’. Stat Med2008;27:207-12. [PMID: 17569110] CrossrefMedlineGoogle Scholar
    • 109. Pepe MSFeng ZGu JWComments on ‘Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond’ by M. J. Pencina et al., Statistics in Medicine (DOI: 10.1002/sim.2929). Stat Med2008;27:173-81. [PMID: 17671958] CrossrefMedlineGoogle Scholar
    • 110. Hilden JGerds TAA note on the evaluation of novel biomarkers: do not rely on integrated discrimination improvement and net reclassification index. Stat Med2013;:. [PMID: 23553436] MedlineGoogle Scholar
    • 111. Brindle PEmberson JLampe FWalker MWhincup PFahey Tet alPredictive accuracy of the Framingham coronary risk score in British men: prospective cohort study. BMJ2003;327:1267. [PMID: 14644971] CrossrefMedlineGoogle Scholar
    • 112. Hense HWSchulte HLöwel HAssmann GKeil UFramingham risk function overestimates risk of coronary heart disease in men and women from Germany—results from the MONICA Augsburg and the PROCAM cohorts. Eur Heart J2003;24:937-45. [PMID: 12714025] CrossrefMedlineGoogle Scholar
    • 113. Koller MTSteyerberg EWWolbers MStijnen TBucher HCHunink MGMet alValidity of the Framingham point scores in the elderly: results from the Rotterdam study. Am Heart J2007;154:87-93. [PMID: 17584559] CrossrefMedlineGoogle Scholar
    • 114. Merry AHBoer JMSchouten LJAmbergen TSteyerberg EWFeskens EJMet alRisk prediction of incident coronary heart disease in The Netherlands: re-estimation and improvement of the SCORE risk function. Eur J Prev Cardiol2012;19:840-8. [PMID: 21551214] CrossrefMedlineGoogle Scholar
    • 115. Siontis GCMTzoulaki ISiontis KCIoannidis JPAComparisons of established risk prediction models for cardiovascular disease: systematic review. BMJ2012;344:3318. [PMID: 22628003] CrossrefMedlineGoogle Scholar
    • 116. Steyerberg EWClinical Prediction Models: A Practical Approach to Development, Validation, and Updating. New York: Springer; 2009. Google Scholar
    • 117. Kramer AAZimmerman JEAssessing the calibration of mortality benchmarks in critical care: The Hosmer-Lemeshow test revisited. Crit Care Med2007;35:2052-6. [PMID: 17568333] CrossrefMedlineGoogle Scholar
    • 118. Cox DRTwo further applications of a model for binary regression. Biometrika1958;45:562-5. CrossrefGoogle Scholar
    • 119. Cook NRPaynter NPComments on ‘Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers’ by M. J. Pencina, R. B. D'Agostino, Sr. and E. W. Steyerberg [Letter]. Stat Med2012;31:93-5. [PMID: 21344474] CrossrefMedlineGoogle Scholar
    • 120. Vergouwe YMoons KGMSteyerberg EWExternal validity of risk models: Use of benchmark values to disentangle a case-mix effect from incorrect coefficients. Am J Epidemiol2010;172:971-80. [PMID: 20807737] CrossrefMedlineGoogle Scholar
    • 121. Cook NRComments on ‘Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond’ by M. J. Pencina et al., Statistics in Medicine (DOI: 10.1002/sim.2929). Stat Med2008;27:191-5. [PMID: 17671959] CrossrefMedlineGoogle Scholar
    • 122. Paynter NPCook NRA bias-corrected net reclassification improvement for clinical subgroups. Med Decis Making2013;33:154-62. [PMID: 23042826] CrossrefMedlineGoogle Scholar
    • 123. Vickers AJElkin EBSteyerberg ENet reclassification improvement and decision theory [Letter]. Stat Med2009;28:525-6. [PMID: 17907248] CrossrefMedlineGoogle Scholar
    • 124. Van Calster BVickers AJPencina MJBaker SGTimmerman DSteyerberg EWEvaluation of markers and risk prediction models: overview of relationships between NRI and decision-analytic measures. Med Decis Making2013;33:490-501. [PMID: 23313931] CrossrefMedlineGoogle Scholar
    • 125. Localio ARGoodman SBeyond the usual prediction accuracy metrics: reporting results for clinical decision making [Editorial]. Ann Intern Med2012;157:294-5. [PMID: 22910942] LinkGoogle Scholar
    • 126. Steyerberg EWVickers AJCook NRGerds TGonen MObuchowski Net alAssessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology2010;21:128-38. [PMID: 20010215] CrossrefMedlineGoogle Scholar
    • 127. Vickers AJElkin EBDecision curve analysis: a novel method for evaluating prediction models. Med Decis Making2006;26:565-74. [PMID: 17099194] CrossrefMedlineGoogle Scholar
    • 128. Vickers AJCronin AMBegg CBOne statistical test is sufficient for assessing new predictive markers. BMC Med Res Methodol2011;11:13. [PMID: 21276237] CrossrefMedlineGoogle Scholar
    • 129. Pepe MSKerr KFLongton GWang ZTesting for improvement in prediction model performance. Stat Med2013;32:1467-82. [PMID: 23296397] CrossrefMedlineGoogle Scholar
    • 130. McGeechan KLiew GMacaskill PIrwig LKlein RSharrett ARet alRisk prediction of coronary heart disease based on retinal vascular caliber (from the Atherosclerosis Risk In Communities [ARIC] Study). Am J Cardiol2008;102:58-63. [PMID: 18572036] CrossrefMedlineGoogle Scholar