In the Clinic
5 November 2019

Type 2 Diabetes

This article has been corrected.
VIEW CORRECTION
This article has been corrected.
VIEW CORRECTION
Publication: Annals of Internal Medicine
Volume 171, Number 9

Abstract

Type 2 diabetes is a prevalent illness that causes major vascular, renal, and neurologic complications. Prevention and treatment of diabetes and its complications are of paramount importance. Many new treatments have emerged over the past 5–10 years. Recent evidence shows that newer treatments may substantially reduce risk for cardiac and renal disease, suggesting that it may be necessary to change existing treatment paradigms. This review summarizes the evidence supporting diabetes prevention and treatment, focusing on aspects that are commonly in the purview of primary care physicians.

Get full access to this article

View all available purchase options and get full access to this article.

Supplemental Material

Supplement. Original Version (PDF)

References

1.
Centers for Disease Control and Prevention. National Diabetes Statistics Report. Atlanta: Centers for Disease Control and Prevention; 2017. Accessed at www.cdc.gov/diabetes/data/statistics/statistics-report.html on 11 June 2019.
2.
Boyle JPThompson TJGregg EWet al. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metr. 2010;8:29. [PMID: 20969750]  doi: 10.1186/1478-7954-8-29
3.
American Diabetes Association. 1. Improving care and promoting health in populations: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019;42:S7-S12. [PMID: 30559227]  doi: 10.2337/dc19-S001
4.
Gregg EWWilliams DEGeiss L. Changes in diabetes-related complications in the United States [Letter]. N Engl J Med. 2014;371:286-7. [PMID: 25014698]  doi: 10.1056/NEJMc1406009
5.
Gregg EWHora IBenoit SR. Resurgence in diabetes-related complications. JAMA. 2019;321:1867-8. [PMID: 30985875]  doi: 10.1001/jama.2019.3471
6.
American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019;42:S13-S28. [PMID: 30559228]  doi: 10.2337/dc19-S002
7.
Simmons RKEchouffo-Tcheugui JBSharp SJet al. Screening for type 2 diabetes and population mortality over 10 years (ADDITION-Cambridge): a cluster-randomised controlled trial. Lancet. 2012;380:1741-8. [PMID: 23040422]  doi: 10.1016/S0140-6736(12)61422-6
8.
Kahn RAlperin PEddy Det al. Age at initiation and frequency of screening to detect type 2 diabetes: a cost-effectiveness analysis. Lancet. 2010;375:1365-74. [PMID: 20356621]  doi: 10.1016/S0140-6736(09)62162-0
9.
The cost-effectiveness of screening for type 2 diabetes, CDC Diabetes Cost-Effectiveness Study Group, Centers for Disease Control and Prevention. JAMA. 1998;280:1757-63. [PMID: 9842951]
10.
Hofer TPVijan SHayward RA. Estimating the microvascular benefits of screening for type 2 diabetes mellitus. Int J Technol Assess Health Care. 2000;16:822-33. [PMID: 11028137]
11.
Grundy SMStone NJBailey ALet al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139:e1082-e1143. [PMID: 30586774]  doi: 10.1161/CIR.0000000000000625
12.
Tuomilehto JLindström JEriksson JGet alet alFinnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343-50. [PMID: 11333990]
13.
Knowler WCBarrett-Connor EFowler SEet alDiabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393-403. [PMID: 11832527]
14.
Knowler WCFowler SEHamman RFet alDiabetes Prevention Program Research Group. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009;374:1677-86. [PMID: 19878986]  doi: 10.1016/S0140-6736(09)61457-4
15.
Pan XRLi GWHu YHet al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20:537-44. [PMID: 9096977]
16.
Chiasson JLJosse RGGomis Ret alSTOP-NIDDM Trail Research Group. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002;359:2072-7. [PMID: 12086760]
17.
Gtistein HCYusuf SBosch Jet alDREAM (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet. 2006;368:1096-105. [PMID: 16997664]
18.
Sussman JBKent DMNelson JPet al. Improving diabetes prevention with benefit based tailored treatment: risk based reanalysis of Diabetes Prevention Program. BMJ. 2015;350:h454. [PMID: 25697494]  doi: 10.1136/bmj.h454
19.
American Diabetes Association. 5. Lifestyle management: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019;42:S46-S60. [PMID: 30559231]  doi: 10.2337/dc19-S005
20.
Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33), UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352:837-53. [PMID: 9742976]
21.
Chudyk APetrella RJ. Effects of exercise on cardiovascular risk factors in type 2 diabetes: a meta-analysis. Diabetes Care. 2011;34:1228-37. [PMID: 21525503]  doi: 10.2337/dc10-1881
22.
Malanda ULWelschen LMRiphagen IIet al. Self-monitoring of blood glucose in patients with type 2 diabetes mellitus who are not using insulin. Cochrane Database Syst Rev. 2012;1:CD005060. [PMID: 22258959]  doi: 10.1002/14651858.CD005060.pub3
23.
Balkau BHu GQiao Qet alDECODE Study Group. Prediction of the risk of cardiovascular mortality using a score that includes glucose as a risk factor. The DECODE Study. Diabetologia. 2004;47:2118-28. [PMID: 15662552]
24.
Holman RRPaul SKBethel MAet al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577-89. [PMID: 18784090]  doi: 10.1056/NEJMoa0806470
25.
Duckworth WAbraira CMoritz Tet alVADT Investigators. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129-39. [PMID: 19092145]  doi: 10.1056/NEJMoa0808431
26.
Reaven PDEmanuele NVWiitala WLet alVADT Investigators. Intensive glucose control in patients with type 2 diabetes - 15-year follow-up. N Engl J Med. 2019;380:2215-24. [PMID: 31167051]  doi: 10.1056/NEJMoa1806802
27.
Qaseem AWilt TJKansagara Det alClinical Guidelines Committee of the American College of Physicians. Hemoglobin A1c targets for glycemic control with pharmacologic therapy for nonpregnant adults with type 2 diabetes mellitus: a guidance statement update from the American College of Physicians. Ann Intern Med. 2018;168:569-76. [PMID: 29507945].  doi: 10.7326/M17-0939
28.
Gerstein HCMiller MEByington RPet alAction to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545-59. [PMID: 18539917]  doi: 10.1056/NEJMoa0802743
29.
ACCORD Study Group. Nine-year effects of 3.7 years of intensive glycemic control on cardiovascular outcomes. Diabetes Care. 2016;39:701-8. [PMID: 26822326]  doi: 10.2337/dc15-2283
30.
Patel AMacMahon SChalmers Jet alADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560-72. [PMID: 18539916]  doi: 10.1056/NEJMoa0802987
31.
Vijan SSussman JBYudkin JSet al. Effect of patients' risks and preferences on health gains with plasma glucose level lowering in type 2 diabetes mellitus. JAMA Intern Med. 2014;174:1227-34. [PMID: 24979148]  doi: 10.1001/jamainternmed.2014.2894
32.
Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34), UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352:854-65. [PMID: 9742977]
33.
Inzucchi SEKosiborod MFitchett Det al. Improvement in cardiovascular outcomes with empagliflozin is independent of glycemic control [Letter]. Circulation. 2018;138:1904-7. [PMID: 30354665]  doi: 10.1161/CIRCULATIONAHA.118.035759
34.
Zinman BWanner CLachin JMet alEMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117-28. [PMID: 26378978]  doi: 10.1056/NEJMoa1504720
35.
Wanner CInzucchi SELachin JMet alEMPA-REG OUTCOME Investigators. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323-34. [PMID: 27299675]  doi: 10.1056/NEJMoa1515920
36.
Perkovic VJardine MJNeal Bet alCREDENCE Trial Investigators. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295-306. [PMID: 30990260]  doi: 10.1056/NEJMoa1811744
37.
Wiviott SDRaz IBonaca MPet alDECLARE–TIMI 58 Investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347-57. [PMID: 30415602]  doi: 10.1056/NEJMoa1812389
38.
Marso SPDaniels GHBrown-Frandsen Ket alLEADER Steering Committee. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311-22. [PMID: 27295427]  doi: 10.1056/NEJMoa1603827
39.
Marso SPBain SCConsoli Aet alSUSTAIN-6 Investigators. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834-44. [PMID: 27633186]
40.
Husain MBirkenfeld ALDonsmark Met alPIONEER 6 Investigators. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019;381:841-51. [PMID: 31185157]  doi: 10.1056/NEJMoa1901118
41.
Gerstein HCColhoun HMDagenais GRet alREWIND Investigators. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019;394:121-30. [PMID: 31189511]  doi: 10.1016/S0140-6736(19)31149-3
42.
Gerstein HCColhoun HMDagenais GRet alREWIND Investigators. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet. 2019;394:131-8. [PMID: 31189509]  doi: 10.1016/S0140-6736(19)31150-X
43.
Pi-Sunyer XAstrup AFujioka Ket alSCALE Obesity and Prediabetes NN8022-1839 Study Group. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015;373:11-22. [PMID: 26132939]  doi: 10.1056/NEJMoa1411892
44.
White WBCannon CPHeller SRet alEXAMINE Investigators. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369:1327-35. [PMID: 23992602]  doi: 10.1056/NEJMoa1305889
45.
Scirica BMBhatt DLBraunwald Eet alSAVOR-TIMI 53 Steering Committee and Investigators. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317-26. [PMID: 23992601]  doi: 10.1056/NEJMoa1307684
46.
Green JBBethel MAArmstrong PWet alTECOS Study Group. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373:232-42. [PMID: 26052984]  doi: 10.1056/NEJMoa1501352
47.
Home PDPocock SJBeck-Nielsen Het alRECORD Study Team. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373:2125-35. [PMID: 19501900]  doi: 10.1016/S0140-6736(09)60953-3
48.
Mahaffey KWHafley GDickerson Set al. Results of a reevaluation of cardiovascular outcomes in the RECORD trial. Am Heart J. 2013;166:240-249. [PMID: 23895806]  doi: 10.1016/j.ahj.2013.05.004
49.
Holman RRFarmer AJDavies MJet al4-T Study Group. Three-year efficacy of complex insulin regimens in type 2 diabetes. N Engl J Med. 2009;361:1736-47. [PMID: 19850703]  doi: 10.1056/NEJMoa0905479
50.
Buse JBWolffenbuttel BHHerman WHet al. DURAbility of Basal versus Lispro mix 75/25 insulin Efficacy (DURABLE) trial 24-week results: safety and efficacy of insulin lispro mix 75/25 versus insulin glargine added to oral antihyperglycemic drugs in patients with type 2 diabetes. Diabetes Care. 2009;32:1007-13. [PMID: 19336625]  doi: 10.2337/dc08-2117
51.
Hayward RAManning WGKaplan SHet al. Starting insulin therapy in patients with type 2 diabetes: effectiveness, complications, and resource utilization. JAMA. 1997;278:1663-9. [PMID: 9388085]
52.
Yki-Järvinen HRyysy LNikkilä Ket al. Comparison of bedtime insulin regimens in patients with type 2 diabetes mellitus. A randomized, controlled trial. Ann Intern Med. 1999;130:389-96. [PMID: 10068412]
53.
Billings LKDoshi AGouet Det al. Efficacy and safety of IDegLira versus basal-bolus insulin therapy in patients with type 2 diabetes uncontrolled on metformin and basal insulin: the DUAL VII randomized clinical trial. Diabetes Care. 2018;41:1009-16. [PMID: 29483185]  doi: 10.2337/dc17-1114
54.
Cushman WCEvans GWByington RPet alACCORD Study Group. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575-85. [PMID: 20228401]  doi: 10.1056/NEJMoa1001286
55.
Whelton PKCarey RMAronow WSet al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2018;138:e484-e594. [PMID: 30354654]  doi: 10.1161/CIR.0000000000000596
56.
Qaseem AWilt TJRich Ret alClinical Guidelines Committee of the American College of Physicians and the Commission on Health of the Public and Science of the American Academy of Family Physicians. Pharmacologic treatment of hypertension in adults aged 60 years or older to higher versus lower blood pressure targets: a clinical practice guideline from the American College of Physicians and the American Academy of Family Physicians. Ann Intern Med. 2017;166:430-7. [PMID: 28135725].  doi: 10.7326/M16-1785
57.
Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360:7-22. [PMID: 12114036]
58.
LaRosa JCGrundy SMWaters DDet alTreating to New Targets (TNT) Investigators. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med. 2005;352:1425-35. [PMID: 15755765]
59.
Cannon CPBraunwald EMcCabe CHet alPravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 Investigators. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350:1495-504. [PMID: 15007110]
60.
Ginsberg HNElam MBLovato LCet alACCORD Study Group. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362:1563-74. [PMID: 20228404]  doi: 10.1056/NEJMoa1001282
61.
Cannon CPBlazing MAGiugliano RPet alIMPROVE-IT Investigators. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387-97. [PMID: 26039521]  doi: 10.1056/NEJMoa1410489
62.
Schwartz GGSteg PGSzarek Met alODYSSEY OUTCOMES Committees and Investigators. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379:2097-107. [PMID: 30403574]  doi: 10.1056/NEJMoa1801174
63.
Bowman LMafham MWallendszus Ket alASCEND Study Collaborative Group. Effects of aspirin for primary prevention in persons with diabetes mellitus. N Engl J Med. 2018;379:1529-39. [PMID: 30146931]  doi: 10.1056/NEJMoa1804988
64.
Sussman JBVijan SChoi Het al. Individual and population benefits of daily aspirin therapy: a proposal for personalizing national guidelines. Circ Cardiovasc Qual Outcomes. 2011;4:268-75. [PMID: 21487091]  doi: 10.1161/CIRCOUTCOMES.110.959239
65.
Vijan SHofer TPHayward RA. Cost-utility analysis of screening intervals for diabetic retinopathy in patients with type 2 diabetes mellitus. JAMA. 2000;283:889-96. [PMID: 10685713]
66.
Brenner BMCooper MEde Zeeuw Det alRENAAL Study Investigators. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861-9. [PMID: 11565518]
67.
Hansson LLindholm LHNiskanen Let al. Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet. 1999;353:611-6. [PMID: 10030325]
68.
Parving HHLehnert HBröchner-Mortensen Jet alIrbesartan in Patients with Type 2 Diabetes and Microalbuminuria Study Group. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001;345:870-8. [PMID: 11565519]
69.
Garber AJAbrahamson MJBarzilay JIet al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm - 2019 executive summary. Endocr Pract. 2019;25:69-100. [PMID: 30742570]  doi: 10.4158/CS-2018-0535

Comments

0 Comments
Sign In to Submit A Comment
Shen Tian*, Juan Wu*, Jia-shuo Liu, Bao-shan Zou, Ling-quan Kong# 26 November 2019
Letter to the Editor
Letter to the Editor Re: Vijan S. Type 2 Diabetes. Ann Intern Med. 2019; 171(9):ITC65-ITC80.

Shen Tian*, Juan Wu*, Jia-shuo Liu, Bao-shan Zou, Ling-quan Kong#
* These authors have contributed equally to this work.
Department of Endocrine and Breast Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
Correspondence to:
#Dr. Ling-quan Kong, Department of Endocrine and Breast Surgery, the First Affiliated Hospital of Chongqing Medical University

To the editors: A recent review by Vijan (1) summarized the evidence supporting diabetes prevention and treatment. But some misleading information exists in the review concerning the diagnosis and prevention of type 2 diabetes.
First, the criteria for diagnosis of diabetes in the review are not consistent with the current 2019 American Diabetes Association (ADA) recommendations. In the “Diagnosis and Evaluation” part, the author stated “diabetes can be diagnosed in persons with classic symptoms and a nonfasting glucose level of 11.1 mmol/L (200mg/dL) or higher ……” But “nonfasting glucose” is unequivalent to “random glucose”. Virtually the 2019 ADA guideline (2) pointed out the person with classic symptoms and random plasma glucose level (instead of nonfasting glucose level) ≥ 11.1 mmol/L (200 mg/dL) will be diagnosed with diabetes. Additionally, in the “CLINICAL BOTTOM LINE” of this part, the diagnosis of type 2 diabetes can be confirmed by “fasting plasma glucose (FPG) levels above 7.0 mmol/L (>126 mg/dL) on 2 occasions at least 1 day apart”. However, according to ADA recommendations (2), a person with FPG level of exactly 7.0 mmol/L (126 mg/dL) should also be diagnosed with diabetes.
Second, in the review, the author developed a table (Table 1) to summarize the diagnostic criteria for diabetes or prediabetes, but it was not complete. According to current ADA and WHO guidelines for diabetes or prediabetes (2,3), the diagnostic criteria for diabetes include FPG value, HbA1c criteria, 2-h plasma glucose (2-h PG) value during a 75-g oral glucose tolerance test (OGTT) or classic symptoms plus random glucose level; the diagnostic criteria for prediabetes include FPG value, HbA1c criteria or OGTT with 2-h PG value. But the standards of OGTT and random glucose for diabetes diagnosis and the standard of OGTT for prediabetes diagnosis are not included in the Table 1 of this review. In fact, the title of the Table 1 should be “Diagnostic Criteria for Type 2 Diabetes or prediabetes” instead of “Diagnostic Criteria for Type 2 Diabetes”. Table makes article more concise and should be accurate and comprehensive to guide doctors’ clinical practice.
Third, the author listed Finnish Diabetes Prevention Study (FDPS), Da Qing Diabetes Prevention Study (DQDPS) and Study to Prevent Non-Insulin-Dependent Diabetes Mellitus (STOP-NIDDM) to indicate the progression from impaired glucose tolerance (IGT) to diabetes can be prevented. But the evidences are not well established. All the IGT population enrolled in these above-mentioned studies were diagnosed according to the outdated 1985 WHO diagnostic criteria (4). Actually according to the current WHO or ADA criteria, those participants with an initial FPG of 7.0-7.7 mmol/L should have been diagnosed with diabetes, instead of IGT. The update of diagnostic and inclusion criteria in clinical trials should not be ignored (4). Thus, the original results of these studies cannot be directly applied to the current IGT population diagnosed by the current WHO or ADA criteria. The supporting evidence of diabetes prevention should be quoted in a more statistically accurate and scientifically serious way.

Potential Financial Conflicts of Interest: None disclosed

References:
1. Vijan S. Type 2 Diabetes. Ann Intern Med. 2019;171(9):Itc65-itc80.
2. American Diabetes Association, 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes care 2019; 42(Suppl 1): S13-s28.
3. World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate and hyperglycaemia. Report of a WHO/IDF consultation.
http:// www.who.int/diabetes/publications/diagnosis_diabetes2006/en/ (November 24 2019)
4. Li H, Tian S, Wu J, Xu Z, Kong LQ. Diagnostic criteria should be considered when reviewing the effect of diabetes prevention studies. Diabetologia 2019; 62(11): 2163-5.

Disclosures: None disclosed

Sandeep Vijan, MD 2 January 2020
Authors' Response
The comments are correct that the following corrections need to be made to the “Clinical Bottom Line” section under “Diagnosis and Evaluation”: the diagnostic criteria for diabetes should be greater than or equal to 126, rather than greater than 126. The values in the Table are accurate but the table should also be more accurately titled “Diagnostic criteria for diabetes and prediabetes”.
The commenters note that non-fasting glucose is not entirely equivalent to random glucose. I agree that the terminology should be better aligned with the ADA for consistency. However, in practice this is of minimal consequence as patients are either fasting, and the diagnosis can be made with a fasting plasma glucose of greater than or equal to 126; or patients are not fasting, and can be diagnosed with symptoms and a glucose >=200. These criteria for diagnosis with random glucose and OGTT were not included in the table to keep the table concisely focused on the primary methods of diagnosis, but the values are in fact cited in the text.
The commenters also are correct that the diagnostic criteria in the older diabetes prevention studies are different than current definitions. An in-depth discussion of those points is beyond the scope of this article, which is a broad clinical summary rather than a focused review of diabetes prevention. However, it is important to recall that glucose is a continuous risk factor for vascular complications, and decisions about diagnostic thresholds depend on one’s preferences for sensitivity vs. specificity of the cutoffs. The important point is that, regardless of thresholds for diagnosis, there is clear evidence that that there are strategies that can reduce blood glucose and therefore lower the risk of diabetes.
Harvey Lee, MD 21 October 2020
Nice

Nice update

Information & Authors

Information

Published In

cover image Annals of Internal Medicine
Annals of Internal Medicine
Volume 171Number 95 November 2019
Pages: ITC65 - ITC80

History

Published online: 5 November 2019
Published in issue: 5 November 2019

Keywords

Authors

Affiliations

Sandeep Vijan, MD
University of Michigan, Ann Arbor, Michigan (S.V.)
CME Objective: To review current evidence for screening, prevention, diagnosis, evaluation, treatment, and practice improvement of in the clinic: type 2 diabetes.
Funding Source: American College of Physicians.
Disclosures: Dr. Vijan, ACP Contributing Author, has nothing to disclose. The form can be viewed at www.acponline.org/authors/icmje/ConflictOfInterestForms.do?msNum=M19-1836.
Editors' Disclosures: Christine Laine, MD, MPH, Editor in Chief, reports that her spouse has stock options/holdings with Targeted Diagnostics and Therapeutics. Darren B. Taichman, MD, PhD, Executive Editor, reports that he has no financial relationships or interests to disclose. Cynthia D. Mulrow, MD, MSc, Senior Deputy Editor, reports that she has no relationships or interests to disclose. Jaya K. Rao, MD, MHS, Deputy Editor, reports that she has stock holdings/options in Eli Lilly and Pfizer. Catharine B. Stack, PhD, MS, Deputy Editor, Statistics, reports that she has stock holdings in Pfizer, Johnson & Johnson, and Colgate-Palmolive. Christina C. Wee, MD, MPH, Deputy Editor, reports employment with Beth Israel Deaconess Medical Center. Sankey V. Williams, MD, Deputy Editor, reports that he has no financial relationships or interests to disclose. Yu-Xiao Yang, MD, MSCE, Deputy Editor, reports that he has no financial relationships or interest to disclose.
Correction: This article was corrected on 20 March 2020 and on 18 May 2021.
With the assistance of additional physician writers, the editors of Annals of Internal Medicine develop In the Clinic using MKSAP and other resources of the American College of Physicians.
In the Clinic does not necessarily represent official ACP clinical policy. For ACP clinical guidelines, please go to https://www.acponline.org/clinical_information/guidelines/.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. For an editable text file, please select Medlars format which will download as a .txt file. Simply select your manager software from the list below and click Download.

For more information or tips please see 'Downloading to a citation manager' in the Help menu.

Format





Download article citation data for:
Sandeep Vijan. Type 2 Diabetes. Ann Intern Med.2019;171:ITC65-ITC80. [Epub 5 November 2019]. doi:10.7326/AITC201911050

View More

Login Options:
Purchase

You will be redirected to acponline.org to sign-in to Annals to complete your purchase.

Access to EPUBs and PDFs for FREE Annals content requires users to be registered and logged in. A subscription is not required. You can create a free account below or from the following link. You will be redirected to acponline.org to create an account that will provide access to Annals. If you are accessing the Free Annals content via your institution's access, registration is not required.

Create your Free Account

You will be redirected to acponline.org to create an account that will provide access to Annals.

View options

PDF/EPUB

View PDF/EPUB

Related in ACP Journals

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media