Original Research5 October 2010
    Author, Article, and Disclosure Information
    Background:

    Sleep loss can modify energy intake and expenditure.

    Objective:

    To determine whether sleep restriction attenuates the effect of a reduced-calorie diet on excess adiposity.

    Design:

    Randomized, 2-period, 2-condition crossover study.

    Setting:

    University clinical research center and sleep laboratory.

    Patients:

    10 overweight nonsmoking adults (3 women and 7 men) with a mean age of 41 years (SD, 5) and a mean body mass index of 27.4 kg/m2 (SD, 2.0).

    Intervention:

    14 days of moderate caloric restriction with 8.5 or 5.5 hours of nighttime sleep opportunity.

    Measurements:

    The primary measure was loss of fat and fat-free body mass. Secondary measures were changes in substrate utilization, energy expenditure, hunger, and 24-hour metabolic hormone concentrations.

    Results:

    Sleep curtailment decreased the proportion of weight lost as fat by 55% (1.4 vs. 0.6 kg with 8.5 vs. 5.5 hours of sleep opportunity, respectively; P = 0.043) and increased the loss of fat-free body mass by 60% (1.5 vs. 2.4 kg; P = 0.002). This was accompanied by markers of enhanced neuroendocrine adaptation to caloric restriction, increased hunger, and a shift in relative substrate utilization toward oxidation of less fat.

    Limitation:

    The nature of the study limited its duration and sample size.

    Conclusion:

    The amount of human sleep contributes to the maintenance of fat-free body mass at times of decreased energy intake. Lack of sufficient sleep may compromise the efficacy of typical dietary interventions for weight loss and related metabolic risk reduction.

    Primary Funding Source:

    National Institutes of Health.

    References

    • 1. Siegel JMClues to the functions of mammalian sleep. Nature2005;437:1264-71. [PMID: 16251951] CrossrefMedlineGoogle Scholar
    • 2. Everson CAWehr TANutritional and metabolic adaptations to prolonged sleep deprivation in the rat. Am J Physiol1993;264:R376-87. [PMID: 8447493] MedlineGoogle Scholar
    • 3. Everson CASzabo ARecurrent restriction of sleep and inadequate recuperation induce both adaptive changes and pathological outcomes. Am J Physiol Regul Integr Comp Physiol2009;297:R1430-40. [PMID: 19692662] CrossrefMedlineGoogle Scholar
    • 4. Ravussin ELillioja SAnderson TEChristin LBogardus CDeterminants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber. J Clin Invest1986;78:1568-78. [PMID: 3782471] CrossrefMedlineGoogle Scholar
    • 5. Nedeltcheva AVKilkus JMImperial JKasza KSchoeller DAPenev PDSleep curtailment is accompanied by increased intake of calories from snacks. Am J Clin Nutr2009;89:126-33. [PMID: 19056602] CrossrefMedlineGoogle Scholar
    • 6. Spiegel KTasali EPenev PVan Cauter EBrief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med2004;141:846-50. [PMID: 15583226] LinkGoogle Scholar
    • 7. Schmid SMHallschmid MJauch-Chara KWilms BBenedict CLehnert Het alShort-term sleep loss decreases physical activity under free-living conditions but does not increase food intake under time-deprived laboratory conditions in healthy men. Am J Clin Nutr2009;90:1476-82. [PMID: 19846546] CrossrefMedlineGoogle Scholar
    • 8. Tschöp MSmiley DLHeiman MLGhrelin induces adiposity in rodents. Nature2000;407:908-13. [PMID: 11057670] CrossrefMedlineGoogle Scholar
    • 9. Nogueiras RTschöp MHZigman JMCentral nervous system regulation of energy metabolism: ghrelin versus leptin. Ann N Y Acad Sci2008;1126:14-9. [PMID: 18448790] CrossrefMedlineGoogle Scholar
    • 10. Rodríguez AGómez-Ambrosi JCatalán VGil MJBecerril SSáinz Net alAcylated and desacyl ghrelin stimulate lipid accumulation in human visceral adipocytes. Int J Obes (Lond)2009;33:541-52. [PMID: 19238155] CrossrefMedlineGoogle Scholar
    • 11. Black AEPrentice AMCoward WAUse of food quotients to predict respiratory quotients for the doubly-labelled water method of measuring energy expenditure. Hum Nutr Clin Nutr1986;40:381-91. [PMID: 3771290] MedlineGoogle Scholar
    • 12. Hill AJBlundell JENutrients and behaviour: research strategies for the investigation of taste characteristics, food preferences, hunger sensations and eating patterns in man. J Psychiatr Res1982;17:203-12. [PMID: 6764938] CrossrefMedlineGoogle Scholar
    • 13. Penev PSpiegel KMarcinkowski TVan Cauter EImpact of carbohydrate-rich meals on plasma epinephrine levels: dysregulation with aging. J Clin Endocrinol Metab2005;90:6198-206. [PMID: 16091491] CrossrefMedlineGoogle Scholar
    • 14. Krotkiewski MLandin KMellström DTölli JLoss of total body potassium during rapid weight loss does not depend on the decrease of potassium concentration in muscles. Different methods to evaluate body composition during a low energy diet. Int J Obes Relat Metab Disord2000;24:101-7. [PMID: 10702758] CrossrefMedlineGoogle Scholar
    • 15. Scrimshaw NSHabicht JPPellet PPiché MLCholakos BEffects of sleep deprivation and reversal of diurnal activity on protein metabolism of young men. Am J Clin Nutr1966;19:313-9. [PMID: 5923588] CrossrefMedlineGoogle Scholar
    • 16. Dezaki KSone HYada TGhrelin is a physiological regulator of insulin release in pancreatic islets and glucose homeostasis. Pharmacol Ther2008;118:239-49. [PMID: 18433874] CrossrefMedlineGoogle Scholar
    • 17. Boyle PJScott JCKrentz AJNagy RJComstock EHoffman CDiminished brain glucose metabolism is a significant determinant for falling rates of systemic glucose utilization during sleep in normal humans. J Clin Invest1994;93:529-35. [PMID: 8113391] CrossrefMedlineGoogle Scholar
    • 18. Ravussin EBurnand BSchutz YJéquier EEnergy expenditure before and during energy restriction in obese patients. Am J Clin Nutr1985;41:753-9. [PMID: 3984927] CrossrefMedlineGoogle Scholar
    • 19. Leibel RLRosenbaum MHirsch JChanges in energy expenditure resulting from altered body weight. N Engl J Med1995;332:621-8. [PMID: 7632212] CrossrefMedlineGoogle Scholar
    • 20. Rosenbaum MGoldsmith RBloomfield DMagnano AWeimer LHeymsfield Set alLow-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest2005;115:3579-86. [PMID: 16322796] CrossrefMedlineGoogle Scholar
    • 21. Landsberg LFeast or famine: the sympathetic nervous system response to nutrient intake. Cell Mol Neurobiol2006;26:497-508. [PMID: 16705481] CrossrefMedlineGoogle Scholar
    • 22. Redman LMHeilbronn LKMartin CKde Jonge LWilliamson DADelany JPet alPennington CALERIE TeamMetabolic and behavioral compensations in response to caloric restriction: implications for the maintenance of weight loss. PLoS One2009;4:4377. [PMID: 19198647] CrossrefMedlineGoogle Scholar
    • 23. Spiegel KLeproult RL'hermite-Balériaux MCopinschi GPenev PDVan Cauter ELeptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab2004;89:5762-71. [PMID: 15531540] CrossrefMedlineGoogle Scholar
    • 24. Shea SAHilton MFOrlova CAyers RTMantzoros CSIndependent circadian and sleep/wake regulation of adipokines and glucose in humans. J Clin Endocrinol Metab2005;90:2537-44. [PMID: 15687326] CrossrefMedlineGoogle Scholar
    • 25. Littman AJVitiello MVFoster-Schubert KUlrich CMTworoger SSPotter JDet alSleep, ghrelin, leptin and changes in body weight during a 1-year moderate-intensity physical activity intervention. Int J Obes (Lond)2007;31:466-75. [PMID: 16909130] CrossrefMedlineGoogle Scholar
    • 26. Patel SRHu FBShort sleep duration and weight gain: a systematic review. Obesity (Silver Spring)2008;16:643-53. [PMID: 18239586] CrossrefMedlineGoogle Scholar