Original Research21 December 2010
A Cohort Study
    Author, Article, and Disclosure Information

    Abstract

    Background:

    Palmitoleic acid (cis-16:1n-7), which is produced by endogenous fat synthesis, has been linked to both beneficial and deleterious metabolic effects, potentially confounded by diverse determinants and tissue sources of endogenous production. Trans-palmitoleate (trans-16:1n-7) represents a distinctly exogenous source of 16:1n-7, unconfounded by endogenous synthesis or its determinants, that may be uniquely informative.

    Objective:

    To investigate whether circulating trans-palmitoleate is independently related to lower metabolic risk and incident type 2 diabetes.

    Design:

    Prospective cohort study from 1992 to 2006.

    Setting:

    Four U.S. communities.

    Patients:

    3736 adults in the Cardiovascular Health Study.

    Measurements:

    Anthropometric characteristics and levels of plasma phospholipid fatty acids, blood lipids, inflammatory markers, and glucose–insulin measured at baseline in 1992 and dietary habits measured 3 years earlier. Multivariate-adjusted models were used to investigate how demographic, clinical, and lifestyle factors independently related to plasma phospholipid trans-palmitoleate; how trans-palmitoleate related to major metabolic risk factors; and how trans-palmitoleate related to new-onset diabetes (304 incident cases). Findings were validated for metabolic risk factors in an independent cohort of 327 women.

    Results:

    In multivariate analyses, whole-fat dairy consumption was most strongly associated with higher trans-palmitoleate levels. Higher trans-palmitoleate levels were associated with slightly lower adiposity and, independently, with higher high-density lipoprotein cholesterol levels (1.9% across quintiles; P = 0.040), lower triglyceride levels (−19.0%; P < 0.001), a lower total cholesterol–HDL cholesterol ratio (−4.7%; P < 0.001), lower C-reactive protein levels (−13.8%; P = 0.05), and lower insulin resistance (−16.7%, P < 0.001). Trans-palmitoleate was also associated with a substantially lower incidence of diabetes, with multivariate hazard ratios of 0.41 (95% CI, 0.27 to 0.64) and 0.38 (CI, 0.24 to 0.62) in quintiles 4 and 5 versus quintile 1 (P for trend < 0.001). Findings were independent of estimated dairy consumption or other fatty acid dairy biomarkers. Protective associations with metabolic risk factors were confirmed in the validation cohort.

    Limitation:

    Results could be affected by measurement error or residual confounding.

    Conclusion:

    Circulating trans-palmitoleate is associated with lower insulin resistance, presence of atherogenic dyslipidemia, and incident diabetes. Our findings may explain previously observed metabolic benefits of dairy consumption and support the need for detailed further experimental and clinical investigation.

    Primary Funding Source:

    National Heart, Lung, and Blood Institute and National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health.

    References

    • 1. Cao HGerhold KMayers JRWiest MMWatkins SMHotamisligil GSIdentification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell2008;134:933-44. [PMID: 18805087] CrossrefMedlineGoogle Scholar
    • 2. Dimopoulos NWatson MSakamoto KHundal HSDifferential effects of palmitate and palmitoleate on insulin action and glucose utilization in rat L6 skeletal muscle cells. Biochem J2006;399:473-81. [PMID: 16822230] CrossrefMedlineGoogle Scholar
    • 3. Sauma LStenkula KGKjølhede PStrålfors PSöderström MNystrom FHPPAR-gamma response element activity in intact primary human adipocytes: effects of fatty acids. Nutrition2006;22:60-8. [PMID: 16226011] CrossrefMedlineGoogle Scholar
    • 4. Maedler KOberholzer JBucher PSpinas GADonath MYMonounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes2003;52:726-33. [PMID: 12606514] CrossrefMedlineGoogle Scholar
    • 5. Erbay EBabaev VRMayers JRMakowski LCharles KNSnitow MEet alReducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. Nat Med2009;15:1383-91. [PMID: 19966778] CrossrefMedlineGoogle Scholar
    • 6. Cambien FWarnet JMVernier VDucimetière PJacqueson AFlament Cet alAn epidemiologic appraisal of the associations between the fatty acids esterifying serum cholesterol and some cardiovascular risk factors in middle-aged men. Am J Epidemiol1988;127:75-86. [PMID: 3276162] CrossrefMedlineGoogle Scholar
    • 7. Rössner SWalldius GBjörvell HFatty acid composition in serum lipids and adipose tissue in severe obesity before and after six weeks of weight loss. Int J Obes1989;13:603-12. [PMID: 2583914] MedlineGoogle Scholar
    • 8. Okada TFuruhashi NKuromori YMiyashita MIwata FHarada KPlasma palmitoleic acid content and obesity in children. Am J Clin Nutr2005;82:747-50. [PMID: 16210702] CrossrefMedlineGoogle Scholar
    • 9. Sarabi MVessby BMillgård JLind LEndothelium-dependent vasodilation is related to the fatty acid composition of serum lipids in healthy subjects. Atherosclerosis2001;156:349-55. [PMID: 11395031] CrossrefMedlineGoogle Scholar
    • 10. Petersson HLind LHulthe JElmgren ACederholm TRisérus URelationships between serum fatty acid composition and multiple markers of inflammation and endothelial function in an elderly population. Atherosclerosis2009;203:298-303. [PMID: 18687433] CrossrefMedlineGoogle Scholar
    • 11. Simon JAFong JBernert JTSerum fatty acids and blood pressure. Hypertension1996;27:303-7. [PMID: 8567056] CrossrefMedlineGoogle Scholar
    • 12. Lindgärde FVessby BAhrén BSerum cholesteryl fatty acid composition and plasma glucose concentrations in Amerindian women. Am J Clin Nutr2006;84:1009-13. [PMID: 17093151] CrossrefMedlineGoogle Scholar
    • 13. Vessby BTengblad SLithell HInsulin sensitivity is related to the fatty acid composition of serum lipids and skeletal muscle phospholipids in 70-year-old men. Diabetologia1994;37:1044-50. [PMID: 7851683] CrossrefMedlineGoogle Scholar
    • 14. Kusunoki MTsutsumi KNakayama MKurokawa TNakamura TOgawa Het alRelationship between serum concentrations of saturated fatty acids and unsaturated fatty acids and the homeostasis model insulin resistance index in Japanese patients with type 2 diabetes mellitus. J Med Invest2007;54:243-7. [PMID: 17878672] CrossrefMedlineGoogle Scholar
    • 15. Salomaa VAhola ITuomilehto JAro APietinen PKorhonen HJet alFatty acid composition of serum cholesterol esters in different degrees of glucose intolerance: a population-based study. Metabolism1990;39:1285-91. [PMID: 2246969] CrossrefMedlineGoogle Scholar
    • 16. Vessby BAro ASkarfors EBerglund LSalminen ILithell HThe risk to develop NIDDM is related to the fatty acid composition of the serum cholesterol esters. Diabetes1994;43:1353-7. [PMID: 7926311] CrossrefMedlineGoogle Scholar
    • 17. Iggman DArnlöv JVessby BCederholm TSjögren PRisérus UAdipose tissue fatty acids and insulin sensitivity in elderly men. Diabetologia2010;53:850-7. [PMID: 20127308] CrossrefMedlineGoogle Scholar
    • 18. Gertow KRosell MSjögren PEriksson PVessby Bde Faire Uet alFatty acid handling protein expression in adipose tissue, fatty acid composition of adipose tissue and serum, and markers of insulin resistance. Eur J Clin Nutr2006;60:1406-13. [PMID: 16788709] CrossrefMedlineGoogle Scholar
    • 19. Stefan NKantartzis KCelebi NStaiger HMachann JSchick Fet alCirculating palmitoleate strongly and independently predicts insulin sensitivity in humans. Diabetes Care2010;33:405-7. [PMID: 19889804] CrossrefMedlineGoogle Scholar
    • 20. Mozaffarian DCao HKing IBLemaitre RNSong XSiscovick DSet alCirculating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes. Am J Clin Nutr2010. [PMID: 20943795] CrossrefMedlineGoogle Scholar
    • 21. Maguire LSO'Sullivan SMGalvin KO'Connor TPO'Brien NMFatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. Int J Food Sci Nutr2004;55:171-8. [PMID: 15223592] CrossrefMedlineGoogle Scholar
    • 22. Mozaffarian DKatan MBAscherio AStampfer MJWillett WC Trans fatty acids and cardiovascular disease. N Engl J Med2006;354:1601-13. [PMID: 16611951] CrossrefMedlineGoogle Scholar
    • 23. Micha RKing IBLemaitre RNRimm EBSacks FSong Xet alFood sources of individual plasma phospholipid trans fatty acid isomers: the Cardiovascular Health Study. Am J Clin Nutr2010;91:883-93. [PMID: 20219966] CrossrefMedlineGoogle Scholar
    • 24. Elwood PCGivens DIBeswick ADFehily AMPickering JEGallacher JThe survival advantage of milk and dairy consumption: an overview of evidence from cohort studies of vascular diseases, diabetes and cancer. J Am Coll Nutr2008;27:723S-34S. [PMID: 19155432] CrossrefMedlineGoogle Scholar
    • 25. Tremblay AGilbert JAMilk products, insulin resistance syndrome and type 2 diabetes. J Am Coll Nutr2009;28 Suppl 1 91S-102S. [PMID: 19571167] CrossrefMedlineGoogle Scholar
    • 26. Fried LPBorhani NOEnright PFurberg CDGardin JMKronmal RAet alThe Cardiovascular Health Study: design and rationale. Ann Epidemiol1991;1:263-76. [PMID: 1669507] CrossrefMedlineGoogle Scholar
    • 27. Lemaitre RNKing IBMozaffarian DSotoodehnia NRea TDKuller LHet alPlasma phospholipid trans fatty acids, fatal ischemic heart disease, and sudden cardiac death in older adults: the cardiovascular health study. Circulation2006;114:209-15. [PMID: 16818809] CrossrefMedlineGoogle Scholar
    • 28. King IBLemaitre RNKestin MEffect of a low-fat diet on fatty acid composition in red cells, plasma phospholipids, and cholesterol esters: investigation of a biomarker of total fat intake. Am J Clin Nutr2006;83:227-36. [PMID: 16469979] CrossrefMedlineGoogle Scholar
    • 29. Lemaitre RNKing IBMozaffarian DKuller LHTracy RPSiscovick DSn-3 Polyunsaturated fatty acids, fatal ischemic heart disease, and nonfatal myocardial infarction in older adults: the Cardiovascular Health Study. Am J Clin Nutr2003;77:319-25. [PMID: 12540389] CrossrefMedlineGoogle Scholar
    • 30. Folch JLees MSloane Stanley GHA simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem1957;226:497-509. [PMID: 13428781] CrossrefMedlineGoogle Scholar
    • 31. Lepage GRoy CCDirect transesterification of all classes of lipids in a one-step reaction. J Lipid Res1986;27:114-20. [PMID: 3958609] CrossrefMedlineGoogle Scholar
    • 32. Rosner BHennekens CHKass EHMiall WEAge-specific correlation analysis of longitudinal blood pressure data. Am J Epidemiol1977;106:306-13. [PMID: 910798] CrossrefMedlineGoogle Scholar
    • 33. Kumanyika SKTell GSShemanski LMartel JChinchilli VMDietary assessment using a picture-sort approach. Am J Clin Nutr1997;65:1123S-1129S. [PMID: 9094908] CrossrefMedlineGoogle Scholar
    • 34. Sun QMa JCampos HRexrode KMAlbert CMMozaffarian Det alBlood concentrations of individual long-chain n-3 fatty acids and risk of nonfatal myocardial infarction. Am J Clin Nutr2008;88:216-23. [PMID: 18614744] CrossrefMedlineGoogle Scholar
    • 35. Royston PMultiple imputation of missing values. Stata J2004;4:227-41. CrossrefGoogle Scholar
    • 36. Wolk AVessby BLjung HBarrefors PEvaluation of a biological marker of dairy fat intake. Am J Clin Nutr1998;68:291-5. [PMID: 9701185] CrossrefMedlineGoogle Scholar
    • 37. Wolk AFuruheim MVessby BFatty acid composition of adipose tissue and serum lipids are valid biological markers of dairy fat intake in men. J Nutr2001;131:828-33. [PMID: 11238766] CrossrefMedlineGoogle Scholar
    • 38. Brevik AVeierød MBDrevon CAAndersen LFEvaluation of the odd fatty acids 15:0 and 17:0 in serum and adipose tissue as markers of intake of milk and dairy fat. Eur J Clin Nutr2005;59:1417-22. [PMID: 16118654] CrossrefMedlineGoogle Scholar
    • 39. Pradhan ADManson JERifai NBuring JERidker PMC-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA2001;286:327-34. [PMID: 11466099] CrossrefMedlineGoogle Scholar
    • 40. Devaraj SSingh UJialal IHuman C-reactive protein and the metabolic syndrome. Curr Opin Lipidol2009;20:182-9. [PMID: 19369869] CrossrefMedlineGoogle Scholar
    • 41. Barazzoni RKiwanuka EZanetti MCristini MVettore MTessari PInsulin acutely increases fibrinogen production in individuals with type 2 diabetes but not in individuals without diabetes. Diabetes2003;52:1851-6. [PMID: 12829656] CrossrefMedlineGoogle Scholar
    • 42. Sommerfeld M Trans unsaturated fatty acids in natural products and processed foods. Prog Lipid Res1983;22:221-33. [PMID: 6356151] CrossrefMedlineGoogle Scholar
    • 43. Postic CGirard JContribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest2008;118:829-38. [PMID: 18317565] CrossrefMedlineGoogle Scholar
    • 44. Musso GGambino RCassader MRecent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog Lipid Res2009;48:1-26. [PMID: 18824034] CrossrefMedlineGoogle Scholar
    • 45. Lim JSMietus-Snyder MValente ASchwarz JMLustig RHThe role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol2010;7:251-64. [PMID: 20368739] CrossrefMedlineGoogle Scholar
    • 46. Hudgins LCHellerstein MSeidman CNeese RDiakun JHirsch JHuman fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J Clin Invest1996;97:2081-91. [PMID: 8621798] CrossrefMedlineGoogle Scholar
    • 47. Marques-Lopes IAnsorena DAstiasaran IForga LMartínez JAPostprandial de novo lipogenesis and metabolic changes induced by a high-carbohydrate, low-fat meal in lean and overweight men. Am J Clin Nutr2001;73:253-61. [PMID: 11157321] CrossrefMedlineGoogle Scholar
    • 48. Schwarz JMLinfoot PDare DAghajanian KHepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am J Clin Nutr2003;77:43-50. [PMID: 12499321] CrossrefMedlineGoogle Scholar
    • 49. Hudgins LCBaday AHellerstein MKParker TSLevine DMSeidman CEet alThe effect of dietary carbohydrate on genes for fatty acid synthase and inflammatory cytokines in adipose tissues from lean and obese subjects. J Nutr Biochem2008;19:237-45. [PMID: 17618104] CrossrefMedlineGoogle Scholar
    • 50. Chong MFHodson LBickerton ASRoberts RNeville MKarpe Fet alParallel activation of de novo lipogenesis and stearoyl-CoA desaturase activity after 3 d of high-carbohydrate feeding. Am J Clin Nutr2008;87:817-23. [PMID: 18400702] CrossrefMedlineGoogle Scholar
    • 51. Baumgard LHMatitashvili ECorl BADwyer DABauman DE trans-10, cis-12 conjugated linoleic acid decreases lipogenic rates and expression of genes involved in milk lipid synthesis in dairy cows. J Dairy Sci2002;85:2155-63. [PMID: 12362447] CrossrefMedlineGoogle Scholar
    • 52. Harvatine KJPerfield JWBauman DEExpression of enzymes and key regulators of lipid synthesis is upregulated in adipose tissue during CLA-induced milk fat depression in dairy cows. J Nutr2009;139:849-54. [PMID: 19211829] CrossrefMedlineGoogle Scholar
    • 53. Hodgson JMWahlqvist MLBoxall JABalazs NDPlatelet trans fatty acids in relation to angiographically assessed coronary artery disease. Atherosclerosis1996;120:147-54. [PMID: 8645355] CrossrefMedlineGoogle Scholar
    • 54. Willett WMozaffarian DRuminant or industrial sources of trans fatty acids: public health issue or food label skirmish? [Editorial]. Am J Clin Nutr2008;87:515-6. [PMID: 18326587] CrossrefMedlineGoogle Scholar
    • 55. Azadbakht LMirmiran PEsmaillzadeh AAzizi FDairy consumption is inversely associated with the prevalence of the metabolic syndrome in Tehranian adults. Am J Clin Nutr2005;82:523-30. [PMID: 16155263] CrossrefMedlineGoogle Scholar
    • 56. Mirmiran PEsmaillzadeh AAzizi FDairy consumption and body mass index: an inverse relationship. Int J Obes (Lond)2005;29:115-21. [PMID: 15534616] CrossrefMedlineGoogle Scholar
    • 57. Pereira MAJacobs DRVan Horn LSlattery MLKartashov AILudwig DSDairy consumption, obesity, and the insulin resistance syndrome in young adults: the CARDIA Study. JAMA2002;287:2081-9. [PMID: 11966382] CrossrefMedlineGoogle Scholar
    • 58. Choi HKWillett WCStampfer MJRimm EHu FBDairy consumption and risk of type 2 diabetes mellitus in men: a prospective study. Arch Intern Med2005;165:997-1003. [PMID: 15883237] CrossrefMedlineGoogle Scholar
    • 59. Rosell MHåkansson NNWolk AAssociation between dairy food consumption and weight change over 9 y in 19,352 perimenopausal women. Am J Clin Nutr2006;84:1481-8. [PMID: 17158433] CrossrefMedlineGoogle Scholar
    • 60. Liu SChoi HKFord ESong YKlevak ABuring JEet alA prospective study of dairy intake and the risk of type 2 diabetes in women. Diabetes Care2006;29:1579-84. [PMID: 16801582] CrossrefMedlineGoogle Scholar
    • 61. Beydoun MAGary TLCaballero BHLawrence RSCheskin LJWang YEthnic differences in dairy and related nutrient consumption among US adults and their association with obesity, central obesity, and the metabolic syndrome. Am J Clin Nutr2008;87:1914-25. [PMID: 18541585] CrossrefMedlineGoogle Scholar
    • 62. Elwood PCPickering JEFehily AMMilk and dairy consumption, diabetes and the metabolic syndrome: the Caerphilly prospective study. J Epidemiol Community Health2007;61:695-8. [PMID: 17630368] CrossrefMedlineGoogle Scholar
    • 63. Vergnaud ACPéneau SChat-Yung SKesse ECzernichow SGalan Pet alDairy consumption and 6-y changes in body weight and waist circumference in middle-aged French adults. Am J Clin Nutr2008;88:1248-55. [PMID: 18996859] MedlineGoogle Scholar
    • 64. Chardigny JMDestaillats FMalpuech-Brugère CMoulin JBauman DELock ALet alDo trans fatty acids from industrially produced sources and from natural sources have the same effect on cardiovascular disease risk factors in healthy subjects? Results of the trans Fatty Acids Collaboration (TRANSFACT) study. Am J Clin Nutr2008;87:558-66. [PMID: 18326592] CrossrefMedlineGoogle Scholar
    • 65. Motard-Bélanger ACharest AGrenier GPaquin PChouinard YLemieux Set alStudy of the effect of trans fatty acids from ruminants on blood lipids and other risk factors for cardiovascular disease. Am J Clin Nutr2008;87:593-9. [PMID: 18326596] CrossrefMedlineGoogle Scholar
    • 66. Risérus USmedman ABasu SVessby BMetabolic effects of conjugated linoleic acid in humans: the Swedish experience. Am J Clin Nutr2004;79:1146S-1148S. [PMID: 15159248] CrossrefMedlineGoogle Scholar
    • 67. Moloney FYeow TPMullen ANolan JJRoche HMConjugated linoleic acid supplementation, insulin sensitivity, and lipoprotein metabolism in patients with type 2 diabetes mellitus. Am J Clin Nutr2004;80:887-95. [PMID: 15447895] CrossrefMedlineGoogle Scholar
    • 68. Zemel MBThompson WMilstead AMorris KCampbell PCalcium and dairy acceleration of weight and fat loss during energy restriction in obese adults. Obes Res2004;12:582-90. [PMID: 15090625] CrossrefMedlineGoogle Scholar
    • 69. Harvey-Berino JGold BCLauber RStarinski AThe impact of calcium and dairy product consumption on weight loss. Obes Res2005;13:1720-6. [PMID: 16286519] CrossrefMedlineGoogle Scholar