Articles5 May 2009
    Author, Article and Disclosure Information

    Background:

    Equations to estimate glomerular filtration rate (GFR) are routinely used to assess kidney function. Current equations have limited precision and systematically underestimate measured GFR at higher values.

    Objective:

    To develop a new estimating equation for GFR: the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation.

    Design:

    Cross-sectional analysis with separate pooled data sets for equation development and validation and a representative sample of the U.S. population for prevalence estimates.

    Setting:

    Research studies and clinical populations (“studies”) with measured GFR and NHANES (National Health and Nutrition Examination Survey), 1999 to 2006.

    Participants:

    8254 participants in 10 studies (equation development data set) and 3896 participants in 16 studies (validation data set). Prevalence estimates were based on 16 032 participants in NHANES.

    Measurements:

    GFR, measured as the clearance of exogenous filtration markers (iothalamate in the development data set; iothalamate and other markers in the validation data set), and linear regression to estimate the logarithm of measured GFR from standardized creatinine levels, sex, race, and age.

    Results:

    In the validation data set, the CKD-EPI equation performed better than the Modification of Diet in Renal Disease Study equation, especially at higher GFR (P < 0.001 for all subsequent comparisons), with less bias (median difference between measured and estimated GFR, 2.5 vs. 5.5 mL/min per 1.73 m2), improved precision (interquartile range [IQR] of the differences, 16.6 vs. 18.3 mL/min per 1.73 m2), and greater accuracy (percentage of estimated GFR within 30% of measured GFR, 84.1% vs. 80.6%). In NHANES, the median estimated GFR was 94.5 mL/min per 1.73 m2 (IQR, 79.7 to 108.1) vs. 85.0 (IQR, 72.9 to 98.5) mL/min per 1.73 m2, and the prevalence of chronic kidney disease was 11.5% (95% CI, 10.6% to 12.4%) versus 13.1% (CI, 12.1% to 14.0%).

    Limitation:

    The sample contained a limited number of elderly people and racial and ethnic minorities with measured GFR.

    Conclusion:

    The CKD-EPI creatinine equation is more accurate than the Modification of Diet in Renal Disease Study equation and could replace it for routine clinical use.

    Primary Funding Source:

    National Institute of Diabetes and Digestive and Kidney Diseases.

    References

    • 1. National Kidney FoundationK/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis2002;39:S1-266. [PMID: 11904577] MedlineGoogle Scholar
    • 2. Stevens LA Coresh J Greene T , and  Levey AS Assessing kidney function—measured and estimated glomerular filtration rate. N Engl J Med2006;354:2473-83. [PMID: 16760447] CrossrefMedlineGoogle Scholar
    • 3. Levey AS Bosch JP Lewis JB Greene T Rogers N , and  Roth D A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med1999;130:461-70 LinkGoogle Scholar
    • 4. Levey AS Coresh J Greene T Stevens LA Zhang YL Hendriksen S et alChronic Kidney Disease Epidemiology CollaborationUsing standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med2006;145:247-54 LinkGoogle Scholar
    • 5. Miller WG Reporting estimated GFR: a laboratory perspective [Editorial]. Am J Kidney Dis2008;52:645-8. [PMID: 18805345] CrossrefMedlineGoogle Scholar
    • 6. Levey AS Andreoli SP DuBose T Provenzano R , and  Collins AJ CKD: common, harmful, and treatable—World Kidney Day 2007. Am J Kidney Dis2007;49:175-9. [PMID: 17261418] CrossrefMedlineGoogle Scholar
    • 7. Coresh J Selvin E Stevens LA Manzi J Kusek JW Eggers P et alPrevalence of chronic kidney disease in the United States. JAMA2007;298:2038-47. [PMID: 17986697] CrossrefMedlineGoogle Scholar
    • 8. Stevens LA Coresh J Feldman HI Greene T Lash JP Nelson RG et alEvaluation of the modification of diet in renal disease study equation in a large diverse population. J Am Soc Nephrol2007;18:2749-57. [PMID: 17855641] CrossrefMedlineGoogle Scholar
    • 9. Lewis J Agodoa L Cheek D Greene T Middleton J O'Connor D et alAfrican-American Study of Hypertension and Kidney DiseaseComparison of cross-sectional renal function measurements in African Americans with hypertensive nephrosclerosis and of primary formulas to estimate glomerular filtration rate. Am J Kidney Dis2001;38:744-53. [PMID: 11576877] CrossrefMedlineGoogle Scholar
    • 10. Ibrahim H Mondress M Tello A Fan Y Koopmeiners J , and  Thomas W An alternative formula to the Cockcroft-Gault and the modification of diet in renal diseases formulas in predicting GFR in individuals with type 1 diabetes. J Am Soc Nephrol2005;16:1051-60. [PMID: 15716336] CrossrefMedlineGoogle Scholar
    • 11. Nelson RG Bennett PH Beck GJ Tan M Knowler WC Mitch WE et alDevelopment and progression of renal disease in Pima Indians with non-insulin-dependent diabetes mellitus. Diabetic Renal Disease Study Group. N Engl J Med1996;335:1636-42. [PMID: 8929360] CrossrefMedlineGoogle Scholar
    • 12. Lewis EJ Hunsicker LG Bain RP , and  Rohde RD The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med1993;329:1456-62. [PMID: 8413456] CrossrefMedlineGoogle Scholar
    • 13. Feldman HI Appel LJ Chertow GM Cifelli D Cizman B Daugirdas J et alChronic Renal Insufficiency Cohort (CRIC) Study InvestigatorsThe Chronic Renal Insufficiency Cohort (CRIC) Study: Design and Methods. J Am Soc Nephrol2003;14:S148-53. [PMID: 12819321] CrossrefMedlineGoogle Scholar
    • 14. Poggio ED Wang X Greene T Van Lente F , and  Hall PM Performance of the modification of diet in renal disease and Cockcroft-Gault equations in the estimation of GFR in health and in chronic kidney disease. J Am Soc Nephrol2005;16:459-66. [PMID: 15615823] CrossrefMedlineGoogle Scholar
    • 15. Rule AD Larson TS Bergstralh EJ Slezak JM Jacobsen SJ , and  Cosio FG Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann Intern Med2004;141:929-37 LinkGoogle Scholar
    • 16. Gonwa TA Jennings L Mai ML Stark PC Levey AS , and  Klintmalm GB Estimation of glomerular filtration rates before and after orthotopic liver transplantation: evaluation of current equations. Liver Transpl2004;10:301-9. [PMID: 14762871] CrossrefMedlineGoogle Scholar
    • 17. Chapman AB Guay-Woodford LM Grantham JJ Torres VE Bae KT Baumgarten DA et alConsortium for Radiologic Imaging Studies of Polycystic Kidney Disease cohortRenal structure in early autosomal-dominant polycystic kidney disease (ADPKD): The Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort. Kidney Int2003;64:1035-45. [PMID: 12911554] CrossrefMedlineGoogle Scholar
    • 18. Bosma RJ Doorenbos CR Stegeman CA van der Heide JJ , and  Navis G Predictive performance of renal function equations in renal transplant recipients: an analysis of patient factors in bias. Am J Transplant2005;5:2193-203. [PMID: 16095498] CrossrefMedlineGoogle Scholar
    • 19. Rook M Hofker HS van Son WJ Homan van der Heide JJ Ploeg RJ , and  Navis GJ Predictive capacity of pre-donation GFR and renal reserve capacity for donor renal function after living kidney donation. Am J Transplant2006;6:1653-9. [PMID: 16827867] CrossrefMedlineGoogle Scholar
    • 20. Grubb A Nyman U Björk J Lindström V Rippe B Sterner G et alSimple cystatin C-based prediction equations for glomerular filtration rate compared with the modification of diet in renal disease prediction equation for adults and the Schwartz and the Counahan-Barratt prediction equations for children. Clin Chem2005;51:1420-31. [PMID: 15961546] CrossrefMedlineGoogle Scholar
    • 21. Mauer M  and  Drummond K The early natural history of nephropathy in type 1 diabetes: I. Study design and baseline characteristics of the study participants. Diabetes2002;51:1572-9. [PMID: 11978658] CrossrefMedlineGoogle Scholar
    • 22. Froissart M Rossert J Jacquot C Paillard M , and  Houillier P Predictive performance of the modification of diet in renal disease and Cockcroft-Gault equations for estimating renal function. J Am Soc Nephrol2005;16:763-73. [PMID: 15659562] CrossrefMedlineGoogle Scholar
    • 23. Mauer M Zinman B Gardiner R Drummond KN Suissa S Donnelly SM et alACE-I and ARBs in early diabetic nephropathy. J Renin Angiotensin Aldosterone Syst2002;3:262-9. [PMID: 12584670] CrossrefMedlineGoogle Scholar
    • 24. Hansen HP Tauber-Lassen E Jensen BR , and  Parving HH Effect of dietary protein restriction on prognosis in patients with diabetic nephropathy. Kidney Int2002;62:220-8. [PMID: 12081581] CrossrefMedlineGoogle Scholar
    • 25. Jacobsen P Andersen S Rossing K Hansen BV , and  Parving HH Dual blockade of the renin-angiotensin system in type 1 patients with diabetic nephropathy. Nephrol Dial Transplant2002;17:1019-24. [PMID: 12032191] CrossrefMedlineGoogle Scholar
    • 26. Jacobsen P Andersen S Rossing K Jensen BR , and  Parving HH Dual blockade of the renin-angiotensin system versus maximal recommended dose of ACE inhibition in diabetic nephropathy. Kidney Int2003;63:1874-80. [PMID: 12675866] CrossrefMedlineGoogle Scholar
    • 27. Mathiesen ER Hommel E Giese J , and  Parving HH Efficacy of captopril in postponing nephropathy in normotensive insulin dependent diabetic patients with microalbuminuria. BMJ1991;303:81-7. [PMID: 1860008] CrossrefMedlineGoogle Scholar
    • 28. Tarnow L Rossing P Jensen C Hansen BV , and  Parving HH Long-term renoprotective effect of nisoldipine and lisinopril in type 1 diabetic patients with diabetic nephropathy. Diabetes Care2000;23:1725-30. [PMID: 11128341] CrossrefMedlineGoogle Scholar
    • 29. Levey AS Coresh J Greene T Marsh J Stevens LA Kusek JW et alChronic Kidney Disease Epidemiology CollaborationExpressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem2007;53:766-72. [PMID: 17332152] CrossrefMedlineGoogle Scholar
    • 30. Stevens LA Manzi J Levey AS Chen J Deysher AE Greene T et alImpact of creatinine calibration on performance of GFR estimating equations in a pooled individual patient database. Am J Kidney Dis2007;50:21-35. [PMID: 17591522] CrossrefMedlineGoogle Scholar
    • 31. Chambers J Hastie T eds Generalized additive models.. In: Chambers J, Hastie T, eds. Statistical Models. London Chapman and Hall 1993 104-54. Google Scholar
    • 32. Efron B  and  Tibshirani RJ An Introduction to the Bootstrap. New York Chapman and Hall 1993. Google Scholar
    • 33. Selvin E Manzi J Stevens LA Van Lente F Lacher DA Levey AS et alCalibration of serum creatinine in the National Health and Nutrition Examination Surveys (NHANES) 1988-1994, 1999-2004. Am J Kidney Dis2007;50:918-26. [PMID: 18037092] CrossrefMedlineGoogle Scholar
    • 34. Coresh J Astor BC Greene T Eknoyan G , and  Levey AS Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis2003;41:1-12. [PMID: 12500213] CrossrefMedlineGoogle Scholar
    • 35. Centers for Disease Control and PreventionNational Health and Nutrition Examination Survey (NHANES). 2007 Hyattsville, MD National Center for Health Statistics 2007. Google Scholar
    • 36. National Center for Health StatisticsNational Health and Nutrition Examination Survey (NHANES)—Analytic Guidelines. 2007 Hyattsville, MD National Center for Health Statistics 2007. Google Scholar
    • 37. Analytic and Reporting Guidelines: The Third National Health and Nutrition Examination Survey, NHANES III (1988–94). 2007 Hyattsville, MD National Center for Health Statistics 2007. Google Scholar
    • 38. Poggio ED Wang X Greene T Van Lente F , and  Hall PM Performance of the modification of diet in renal disease and Cockcroft-Gault equations in the estimation of GFR in health and in chronic kidney disease. J Am Soc Nephrol2005;16:459-66. [PMID: 15615823] CrossrefMedlineGoogle Scholar
    • 39. Perrone RD Madias NE , and  Levey AS Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem1992;38:1933-53. [PMID: 1394976] CrossrefMedlineGoogle Scholar
    • 40. Glassock RJ  and  Winearls C An epidemic of chronic kidney disease: fact or fiction? Nephrol Dial Transplant2008;23:1117-21. [PMID: 18359870] CrossrefMedlineGoogle Scholar
    • 41. U.S. Renal Data System. USRDS 2008 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2008. Accessed at www.usrds.org/adr.htm on 11 December 2008. Google Scholar
    • 42. Coresh J Stevens LA , and  Levey AS Chronic kidney disease is common: what do we do next? Nephrol Dial Transplant2008;23:1122-5. [PMID: 18359871] CrossrefMedlineGoogle Scholar
    • 43. Hallan SI Coresh J Astor BC Asberg A Powe NR Romundstad S et alInternational comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol2006;17:2275-84. [PMID: 16790511] CrossrefMedlineGoogle Scholar
    • 44. Aronoff GR Berns JS Brier ME Golper TA Morrison G Singer I et alDrug Prescribing in Renal Failure. Dosing Guidelines for Adults. 4th ed. Philadelphia American Coll of Physicians 1999. Google Scholar
    • 45. Seliger SL Zhan M Hsu VD Walker LD , and  Fink JC Chronic kidney disease adversely influences patient safety. J Am Soc Nephrol2008;19:2414-9. [PMID: 18776123] CrossrefMedlineGoogle Scholar
    • 46. Benko A Fraser-Hill M Magner P Capusten B Barrett B Myers A et alCanadian Association of RadiologistsCanadian Association of Radiologists: consensus guidelines for the prevention of contrast-induced nephropathy. Can Assoc Radiol J2007;58:79-87. [PMID: 17521052] MedlineGoogle Scholar
    • 47. U.S. Food and Drug Administration. Information for Healthcare Professionals: Gadolinium-Based Contrast Agents for Magnetic Resonance Imaging (marketed as Magnevist, MultiHance, Omniscan, OptiMARK, ProHance). Silver Spring, MD: Center for Drug Evaluation and Research; 2008. Accessed at www.fda.gov/cder/drug/InfoSheets/HCP/gcca_200705.htm on 13 March 2009. Google Scholar
    • 48. Khurana A McLean L Atkinson S , and  Foulks CJ The effect of oral sodium phosphate drug products on renal function in adults undergoing bowel endoscopy. Arch Intern Med2008;168:593-7. [PMID: 18362251] CrossrefMedlineGoogle Scholar
    • 49. Hsu CY Ordoñez JD Chertow GM Fan D McCulloch CE , and  Go AS The risk of acute renal failure in patients with chronic kidney disease. Kidney Int2008;74:101-7. [PMID: 18385668] CrossrefMedlineGoogle Scholar
    • 50. Sarnak MJ Levey AS Schoolwerth AC Coresh J Culleton B Hamm LL et alAmerican Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and PreventionKidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation2003;108:2154-69. [PMID: 14581387] CrossrefMedlineGoogle Scholar
    • 51. Stevens LA Coresh J Schmid CH Feldman HI Froissart M Kusek J et alEstimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am J Kidney Dis2008;51:395-406. [PMID: 18295055] CrossrefMedlineGoogle Scholar