Articles15 August 2006
Author, Article and Disclosure Information
Background:

Glomerular filtration rate (GFR) estimates facilitate detection of chronic kidney disease but require calibration of the serum creatinine assay to the laboratory that developed the equation. The 4-variable equation from the Modification of Diet in Renal Disease (MDRD) Study has been reexpressed for use with a standardized assay.

Objective:

To describe the performance of the revised 4-variable MDRD Study equation and compare it with the performance of the 6-variable MDRD Study and Cockcroft–Gault equations.

Design:

Comparison of estimated and measured GFR.

Setting:

15 clinical centers participating in a randomized, controlled trial.

Patients:

1628 patients with chronic kidney disease participating in the MDRD Study.

Measurements:

Serum creatinine levels were calibrated to an assay traceable to isotope-dilution mass spectrometry. Glomerular filtration rate was measured as urinary clearance of 125I-iothalamate.

Results:

Mean measured GFR was 39.8 mL/min per 1.73 m2 (SD, 21.2). Accuracy and precision of the revised 4-variable equation were similar to those of the original 6-variable equation and better than in the Cockcroft–Gault equation, even when the latter was corrected for bias, with 90%, 91%, 60%, and 83% of estimates within 30% of measured GFR, respectively. Differences between measured and estimated GFR were greater for all equations when the estimated GFR was 60 mL/min per 1.73 m2 or greater.

Limitations:

The MDRD Study included few patients with a GFR greater than 90 mL/min per 1.73 m2. Equations were not compared in a separate study sample.

Conclusions:

The 4-variable MDRD Study equation provides reasonably accurate GFR estimates in patients with chronic kidney disease and a measured GFR of less than 90 mL/min per 1.73 m2. By using the reexpressed MDRD Study equation with the standardized serum creatinine assay, clinical laboratories can report more accurate GFR estimates.

*For a list of investigators of the Chronic Kidney Disease Epidemiology Collaboration, see the Appendix.

References

  • 1. Levey AS Coresh J Balk E Kausz AT Levin A Steffes MW et alNational Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med2003;139:137-47. [PMID: 12859163] LinkGoogle Scholar
  • 2. Levey AS Eckardt KU Tsukamoto Y Levin A Coresh J Rossert J et alDefinition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int2005;67:2089-100. [PMID: 15882252] CrossrefMedlineGoogle Scholar
  • 3. National Kidney FoundationK/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Kidney Disease Outcome Quality Initiative. Am J Kidney Dis2002; 2 Suppl 1 S1-266. [PMID: 11904577] MedlineGoogle Scholar
  • 4. Wesson L Physiology of the Human Kidney. New York: Grune & Stratton; 1969. Google Scholar
  • 5. Siegel N. Renal Express. Accessed at www.asn-online.org/newsletter/renal_express/2003/03-10_Rxpress.aspx on 23 June 2006. Google Scholar
  • 6. National Kidney Disease Education Program. Information of Health Professionals. Creatinine Standardization Program. Accessed at www.nkdep.nih.gov/labprofessionals/index.htm on 9 February 2006. Google Scholar
  • 7. New Jersey State Senate, 211th Legislature. S2232 Madden: Bryant; 2005:1-2. Google Scholar
  • 8. Mathew TH Australasian Creatinine Consensus Working GroupChronic kidney disease and automatic reporting of estimated glomerular filtration rate: a position statement. Med J Aust2005;183:138-41. [PMID: 16053416] CrossrefMedlineGoogle Scholar
  • 9. La Caisse Nationale d'Assurance Maladie des Professions Indépendantes. Avenant à la convention nationale des directeurs de laboratoire privé d'analyses médicales. Accessed at www.admi.net/jo/20030227/SANS0320604X.html on 8 November 2004. Google Scholar
  • 10. British Columbia Ministry of Health. Guidelines and Protocols, Advisory Committee. Accessed at www.healthservices.gov.bc.ca/msp/protoguides/gps/ckd.pdf on 21 October 2005. Google Scholar
  • 11. Levey AS Bosch JP Lewis JB Greene T Rogers N Roth D A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med1999;130:461-70. [PMID: 10075613] LinkGoogle Scholar
  • 12. Levey AS Greene T Kusek J Beck G A simplified equation to predict glomerular filtration rate from serum creatinine [Abstract]. J Am Soc Nephrol2000;11:155A. Google Scholar
  • 13. Stevens LA Levey AS Clinical implications of estimating equations for glomerular filtration rate [Editorial]. Ann Intern Med2004;141:959-61. [PMID: 15611494] LinkGoogle Scholar
  • 14. Poggio ED Wang X Greene T Van Lente F Hall PM Performance of the Modification of Diet in Renal Disease and Cockcroft-Gault equations in the estimation of GFR in health and in chronic kidney disease. J Am Soc Nephrol2005;16:459-66. [PMID: 15615823] CrossrefMedlineGoogle Scholar
  • 15. Lewis J Agodoa L Cheek D Greene T Middleton J O'Connor D et alComparison of cross-sectional renal function measurements in African Americans with hypertensive nephrosclerosis and of primary formulas to estimate glomerular filtration rate. Am J Kidney Dis2001;38:744-53. [PMID: 11576877] CrossrefMedlineGoogle Scholar
  • 16. Rule AD Larson TS Bergstralh EJ Slezak JM Jacobsen SJ Cosio FG Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann Intern Med2004;141:929-37. [PMID: 15611490] LinkGoogle Scholar
  • 17. Gonwa TA Jennings L Mai ML Stark PC Levey AS Klintmalm GB Estimation of glomerular filtration rates before and after orthotopic liver transplantation: evaluation of current equations. Liver Transpl2004;10:301-9. [PMID: 14762871] CrossrefMedlineGoogle Scholar
  • 18. Froissart M Rossert J Jacquot C Paillard M Houillier P Predictive performance of the Modification of Diet in Renal Disease and Cockcroft-Gault equations for estimating renal function. J Am Soc Nephrol2005;16:763-73. [PMID: 15659562] CrossrefMedlineGoogle Scholar
  • 19. Hallan S Asberg A Lindberg M Johnsen H Validation of the Modification of Diet in Renal Disease formula for estimating GFR with special emphasis on calibration of the serum creatinine assay. Am J Kidney Dis2004;44:84-93. [PMID: 15211442] CrossrefMedlineGoogle Scholar
  • 20. Lin J Knight EL Hogan ML Singh AK A comparison of prediction equations for estimating glomerular filtration rate in adults without kidney disease. J Am Soc Nephrol2003;14:2573-80. [PMID: 14514734] CrossrefMedlineGoogle Scholar
  • 21. Bostom AG Kronenberg F Ritz E Predictive performance of renal function equations for patients with chronic kidney disease and normal serum creatinine levels. J Am Soc Nephrol2002;13:2140-4. [PMID: 12138147] CrossrefMedlineGoogle Scholar
  • 22. Zuo L Ma YC Zhou YH Wang M Xu GB Wang HY Application of GFR-estimating equations in Chinese patients with chronic kidney disease. Am J Kidney Dis2005;45:463-72. [PMID: 15754268] CrossrefMedlineGoogle Scholar
  • 23. Gaspari F Ferrari S Stucchi N Centemeri E Carrara F Pellegrino M et alPerformance of different prediction equations for estimating renal function in kidney transplantation. Am J Transplant2004;4:1826-35. [PMID: 15476483] CrossrefMedlineGoogle Scholar
  • 24. Lamb EJ Webb MC Simpson DE Coakley AJ Newman DJ O'Riordan SE Estimation of glomerular filtration rate in older patients with chronic renal insufficiency: is the Modification of Diet in Renal Disease formula an improvement? J Am Geriatr Soc2003;51:1012-7. [PMID: 12834524] CrossrefMedlineGoogle Scholar
  • 25. Vervoort G Willems HL Wetzels JF Assessment of glomerular filtration rate in healthy subjects and normoalbuminuric diabetic patients: validity of a new (MDRD) prediction equation. Nephrol Dial Transplant2002;17:1909-13. [PMID: 12401845] CrossrefMedlineGoogle Scholar
  • 26. Skluzacek PA Szewc RG Nolan CR 3rd Riley DJ Lee S Pergola PE Prediction of GFR in liver transplant candidates. Am J Kidney Dis2003;42:1169-76. [PMID: 14655188] CrossrefMedlineGoogle Scholar
  • 27. Ibrahim H Mondress M Tello A Fan Y Koopmeiners J Thomas W An alternative formula to the Cockcroft-Gault and the Modification of Diet in Renal Diseases formulas in predicting GFR in individuals with type 1 diabetes. J Am Soc Nephrol2005;16:1051-60. [PMID: 15716336] CrossrefMedlineGoogle Scholar
  • 28. Rigalleau V Lasseur C Perlemoine C Barthe N Raffaitin C Liu C et alEstimation of glomerular filtration rate in diabetic subjects: Cockcroft formula or Modification of Diet in Renal Disease study equation? Diabetes Care2005;28:838-43. [PMID: 15793182] CrossrefMedlineGoogle Scholar
  • 29. Pöge U Gerhardt T Palmedo H Klehr HU Sauerbruch T Woitas RP MDRD equations for estimation of GFR in renal transplant recipients. Am J Transplant2005;5:1306-11. [PMID: 15888034] CrossrefMedlineGoogle Scholar
  • 30. Grubb A Björk J Lindström V Sterner G Bondesson P Nyman U A cystatin C-based formula without anthropometric variables estimates glomerular filtration rate better than creatinine clearance using the Cockcroft-Gault formula. Scand J Clin Lab Invest2005;65:153-62. [PMID: 16025838] CrossrefMedlineGoogle Scholar
  • 31. Fehrman-Ekholm I Skeppholm L Renal function in the elderly (>70 years old) measured by means of iohexol clearance, serum creatinine, serum urea and estimated clearance. Scand J Urol Nephrol2004;38:73-7. [PMID: 15204431] CrossrefMedlineGoogle Scholar
  • 32. Coresh J Stevens LA Kidney function estimating equations: where do we stand? Curr Opin Nephrol Hypertens2006;15:276-84. [PMID: 16609295] CrossrefMedlineGoogle Scholar
  • 33. Coresh J Astor BC McQuillan G Kusek J Greene T Van Lente F et alCalibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis2002;39:920-9. [PMID: 11979335] CrossrefMedlineGoogle Scholar
  • 34. Miller WG Myers GL Ashwood ER Killeen AA Wang E Thienpont LM et alCreatinine measurement: state of the art in accuracy and interlaboratory harmonization. Arch Pathol Lab Med2005;129:297-304. [PMID: 15737021] CrossrefMedlineGoogle Scholar
  • 35. Murthy K Stevens LA Stark PC Levey AS Variation in the serum creatinine assay calibration: a practical application to glomerular filtration rate estimation. Kidney Int2005;68:1884-7. [PMID: 16164667] CrossrefMedlineGoogle Scholar
  • 36. Myers GL Miller WG Coresh J Fleming J Greenberg N Greene T et alRecommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem2006;52:5-18. [PMID: 16332993] CrossrefMedlineGoogle Scholar
  • 37. Levey AS Coresh J Greene T Marsh J Stevens LA Kusek J et alExpressing the MDRD Study equation for estimating GFR with IDMS traceable (gold standard) serum creatinine values [Abstract]. J Am Soc Nephrol2005;16:69A. Google Scholar
  • 38. Cockcroft DW Gault MH Prediction of creatinine clearance from serum creatinine. Nephron1976;16:31-41. [PMID: 1244564] CrossrefMedlineGoogle Scholar
  • 39. Junge W Wilke B Halabi A Klein G Determination of reference intervals for serum creatinine, creatinine excretion and creatinine clearance with an enzymatic and a modified Jaffé method. Clin Chim Acta2004;344:137-48. [PMID: 15149882] CrossrefMedlineGoogle Scholar
  • 40. Klahr S Levey AS Beck GJ Caggiula AW Hunsicker L Kusek JW et alThe effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med1994;330:877-84. [PMID: 8114857] CrossrefMedlineGoogle Scholar
  • 41. DeLong ER DeLong DM Clarke-Pearson DL Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics1988;44:837-45. [PMID: 3203132] CrossrefMedlineGoogle Scholar
  • 42. Cirillo M Anastasio P De Santo NG Relationship of gender, age, and body mass index to errors in predicted kidney function. Nephrol Dial Transplant2005;20:1791-8. [PMID: 15998649] CrossrefMedlineGoogle Scholar
  • 43. Verhave JC Fesler P Ribstein J du Cailar G Mimran A Estimation of renal function in subjects with normal serum creatinine levels: influence of age and body mass index. Am J Kidney Dis2005;46:233-41. [PMID: 16112041] CrossrefMedlineGoogle Scholar
  • 44. Rule AD Gussak HM Pond GR Bergstralh EJ Stegall MD Cosio FG et alMeasured and estimated GFR in healthy potential kidney donors. Am J Kidney Dis2004;43:112-9. [PMID: 14712434] CrossrefMedlineGoogle Scholar
  • 45. Greene T Li L Coresh J Poggio P Schimd C Stark P et alA statistical explanation for different relationships of serum creatinine (Scr) vs. GFR across populations: preliminary results [Abstract]. J Am Soc Nephrol2005;16:319A. Google Scholar
  • 46. Stevens LA Levey AS Chronic kidney disease in the elderly—how to assess risk [Editorial]. N Engl J Med2005;352:2122-4. [PMID: 15901867] CrossrefMedlineGoogle Scholar
  • 47. Coresh J Stevens LA Greene T Eggers O Kusek J Van Lente F et alComparison of GFR estimating equations using serum cystatin and creatinine: a pooled analysis of 1706 individuals [Abstract]. J Am Soc Nephrol2005;16:69A. Google Scholar