Articles
15 August 2006

Using Standardized Serum Creatinine Values in the Modification of Diet in Renal Disease Study Equation for Estimating Glomerular Filtration Rate

This article has been corrected.
VIEW CORRECTION
Publication: Annals of Internal Medicine
Volume 145, Number 4

Abstract

Background:

Glomerular filtration rate (GFR) estimates facilitate detection of chronic kidney disease but require calibration of the serum creatinine assay to the laboratory that developed the equation. The 4-variable equation from the Modification of Diet in Renal Disease (MDRD) Study has been reexpressed for use with a standardized assay.

Objective:

To describe the performance of the revised 4-variable MDRD Study equation and compare it with the performance of the 6-variable MDRD Study and Cockcroft–Gault equations.

Design:

Comparison of estimated and measured GFR.

Setting:

15 clinical centers participating in a randomized, controlled trial.

Patients:

1628 patients with chronic kidney disease participating in the MDRD Study.

Measurements:

Serum creatinine levels were calibrated to an assay traceable to isotope-dilution mass spectrometry. Glomerular filtration rate was measured as urinary clearance of 125I-iothalamate.

Results:

Mean measured GFR was 39.8 mL/min per 1.73 m2 (SD, 21.2). Accuracy and precision of the revised 4-variable equation were similar to those of the original 6-variable equation and better than in the Cockcroft–Gault equation, even when the latter was corrected for bias, with 90%, 91%, 60%, and 83% of estimates within 30% of measured GFR, respectively. Differences between measured and estimated GFR were greater for all equations when the estimated GFR was 60 mL/min per 1.73 m2 or greater.

Limitations:

The MDRD Study included few patients with a GFR greater than 90 mL/min per 1.73 m2. Equations were not compared in a separate study sample.

Conclusions:

The 4-variable MDRD Study equation provides reasonably accurate GFR estimates in patients with chronic kidney disease and a measured GFR of less than 90 mL/min per 1.73 m2. By using the reexpressed MDRD Study equation with the standardized serum creatinine assay, clinical laboratories can report more accurate GFR estimates.
*For a list of investigators of the Chronic Kidney Disease Epidemiology Collaboration, see the Appendix.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Levey ASCoresh JBalk EKausz ATLevin ASteffes MWet al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med. 2003;139:137-47. [PMID: 12859163]
2.
Levey ASEckardt KUTsukamoto YLevin ACoresh JRossert Jet al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005;67:2089-100. [PMID: 15882252]
3.
National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Kidney Disease Outcome Quality Initiative. Am J Kidney Dis. 2002; 2 Suppl 1 S1-266. [PMID: 11904577]
4.
Wesson L. Physiology of the Human Kidney. New York: Grune & Stratton; 1969.
5.
Siegel N. Renal Express. Accessed at www.asn-online.org/newsletter/renal_express/2003/03-10_Rxpress.aspx on 23 June 2006.
6.
National Kidney Disease Education Program. Information of Health Professionals. Creatinine Standardization Program. Accessed at www.nkdep.nih.gov/labprofessionals/index.htm on 9 February 2006.
7.
New Jersey State Senate, 211th Legislature. S2232 Madden: Bryant; 2005:1-2.
8.
Mathew THAustralasian Creatinine Consensus Working Group. Chronic kidney disease and automatic reporting of estimated glomerular filtration rate: a position statement. Med J Aust. 2005;183:138-41. [PMID: 16053416]
9.
La Caisse Nationale d'Assurance Maladie des Professions Indépendantes. Avenant à la convention nationale des directeurs de laboratoire privé d'analyses médicales. Accessed at www.admi.net/jo/20030227/SANS0320604X.html on 8 November 2004.
10.
British Columbia Ministry of Health. Guidelines and Protocols, Advisory Committee. Accessed at www.healthservices.gov.bc.ca/msp/protoguides/gps/ckd.pdf on 21 October 2005.
11.
Levey ASBosch JPLewis JBGreene TRogers NRoth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130:461-70. [PMID: 10075613]
12.
Levey ASGreene TKusek JBeck G. A simplified equation to predict glomerular filtration rate from serum creatinine [Abstract]. J Am Soc Nephrol. 2000;11:155A.
13.
Stevens LALevey AS. Clinical implications of estimating equations for glomerular filtration rate [Editorial]. Ann Intern Med. 2004;141:959-61. [PMID: 15611494]
14.
Poggio EDWang XGreene TVan Lente FHall PM. Performance of the Modification of Diet in Renal Disease and Cockcroft-Gault equations in the estimation of GFR in health and in chronic kidney disease. J Am Soc Nephrol. 2005;16:459-66. [PMID: 15615823]
15.
Lewis JAgodoa LCheek DGreene TMiddleton JO'Connor Det al. Comparison of cross-sectional renal function measurements in African Americans with hypertensive nephrosclerosis and of primary formulas to estimate glomerular filtration rate. Am J Kidney Dis. 2001;38:744-53. [PMID: 11576877]
16.
Rule ADLarson TSBergstralh EJSlezak JMJacobsen SJCosio FG. Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann Intern Med. 2004;141:929-37. [PMID: 15611490]
17.
Gonwa TAJennings LMai MLStark PCLevey ASKlintmalm GB. Estimation of glomerular filtration rates before and after orthotopic liver transplantation: evaluation of current equations. Liver Transpl. 2004;10:301-9. [PMID: 14762871]
18.
Froissart MRossert JJacquot CPaillard MHouillier P. Predictive performance of the Modification of Diet in Renal Disease and Cockcroft-Gault equations for estimating renal function. J Am Soc Nephrol. 2005;16:763-73. [PMID: 15659562]
19.
Hallan SAsberg ALindberg MJohnsen H. Validation of the Modification of Diet in Renal Disease formula for estimating GFR with special emphasis on calibration of the serum creatinine assay. Am J Kidney Dis. 2004;44:84-93. [PMID: 15211442]
20.
Lin JKnight ELHogan MLSingh AK. A comparison of prediction equations for estimating glomerular filtration rate in adults without kidney disease. J Am Soc Nephrol. 2003;14:2573-80. [PMID: 14514734]
21.
Bostom AGKronenberg FRitz E. Predictive performance of renal function equations for patients with chronic kidney disease and normal serum creatinine levels. J Am Soc Nephrol. 2002;13:2140-4. [PMID: 12138147]
22.
Zuo LMa YCZhou YHWang MXu GBWang HY. Application of GFR-estimating equations in Chinese patients with chronic kidney disease. Am J Kidney Dis. 2005;45:463-72. [PMID: 15754268]
23.
Gaspari FFerrari SStucchi NCentemeri ECarrara FPellegrino Met al. Performance of different prediction equations for estimating renal function in kidney transplantation. Am J Transplant. 2004;4:1826-35. [PMID: 15476483]
24.
Lamb EJWebb MCSimpson DECoakley AJNewman DJO'Riordan SE. Estimation of glomerular filtration rate in older patients with chronic renal insufficiency: is the Modification of Diet in Renal Disease formula an improvement? J Am Geriatr Soc. 2003;51:1012-7. [PMID: 12834524]
25.
Vervoort GWillems HLWetzels JF. Assessment of glomerular filtration rate in healthy subjects and normoalbuminuric diabetic patients: validity of a new (MDRD) prediction equation. Nephrol Dial Transplant. 2002;17:1909-13. [PMID: 12401845]
26.
Skluzacek PASzewc RGNolan CR 3rdRiley DJLee SPergola PE. Prediction of GFR in liver transplant candidates. Am J Kidney Dis. 2003;42:1169-76. [PMID: 14655188]
27.
Ibrahim HMondress MTello AFan YKoopmeiners JThomas W. An alternative formula to the Cockcroft-Gault and the Modification of Diet in Renal Diseases formulas in predicting GFR in individuals with type 1 diabetes. J Am Soc Nephrol. 2005;16:1051-60. [PMID: 15716336]
28.
Rigalleau VLasseur CPerlemoine CBarthe NRaffaitin CLiu Cet al. Estimation of glomerular filtration rate in diabetic subjects: Cockcroft formula or Modification of Diet in Renal Disease study equation? Diabetes Care. 2005;28:838-43. [PMID: 15793182]
29.
Pöge UGerhardt TPalmedo HKlehr HUSauerbruch TWoitas RP. MDRD equations for estimation of GFR in renal transplant recipients. Am J Transplant. 2005;5:1306-11. [PMID: 15888034]
30.
Grubb ABjörk JLindström VSterner GBondesson PNyman U. A cystatin C-based formula without anthropometric variables estimates glomerular filtration rate better than creatinine clearance using the Cockcroft-Gault formula. Scand J Clin Lab Invest. 2005;65:153-62. [PMID: 16025838]
31.
Fehrman-Ekholm ISkeppholm L. Renal function in the elderly (>70 years old) measured by means of iohexol clearance, serum creatinine, serum urea and estimated clearance. Scand J Urol Nephrol. 2004;38:73-7. [PMID: 15204431]
32.
Coresh JStevens LA. Kidney function estimating equations: where do we stand? Curr Opin Nephrol Hypertens. 2006;15:276-84. [PMID: 16609295]
33.
Coresh JAstor BCMcQuillan GKusek JGreene TVan Lente Fet al. Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis. 2002;39:920-9. [PMID: 11979335]
34.
Miller WGMyers GLAshwood ERKilleen AAWang EThienpont LMet al. Creatinine measurement: state of the art in accuracy and interlaboratory harmonization. Arch Pathol Lab Med. 2005;129:297-304. [PMID: 15737021]
35.
Murthy KStevens LAStark PCLevey AS. Variation in the serum creatinine assay calibration: a practical application to glomerular filtration rate estimation. Kidney Int. 2005;68:1884-7. [PMID: 16164667]
36.
Myers GLMiller WGCoresh JFleming JGreenberg NGreene Tet al. Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem. 2006;52:5-18. [PMID: 16332993]
37.
Levey ASCoresh JGreene TMarsh JStevens LAKusek Jet al. Expressing the MDRD Study equation for estimating GFR with IDMS traceable (gold standard) serum creatinine values [Abstract]. J Am Soc Nephrol. 2005;16:69A.
38.
Cockcroft DWGault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31-41. [PMID: 1244564]
39.
Junge WWilke BHalabi AKlein G. Determination of reference intervals for serum creatinine, creatinine excretion and creatinine clearance with an enzymatic and a modified Jaffé method. Clin Chim Acta. 2004;344:137-48. [PMID: 15149882]
40.
Klahr SLevey ASBeck GJCaggiula AWHunsicker LKusek JWet al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med. 1994;330:877-84. [PMID: 8114857]
41.
DeLong ERDeLong DMClarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837-45. [PMID: 3203132]
42.
Cirillo MAnastasio PDe Santo NG. Relationship of gender, age, and body mass index to errors in predicted kidney function. Nephrol Dial Transplant. 2005;20:1791-8. [PMID: 15998649]
43.
Verhave JCFesler PRibstein Jdu Cailar GMimran A. Estimation of renal function in subjects with normal serum creatinine levels: influence of age and body mass index. Am J Kidney Dis. 2005;46:233-41. [PMID: 16112041]
44.
Rule ADGussak HMPond GRBergstralh EJStegall MDCosio FGet al. Measured and estimated GFR in healthy potential kidney donors. Am J Kidney Dis. 2004;43:112-9. [PMID: 14712434]
45.
Greene TLi LCoresh JPoggio PSchimd CStark Pet al. A statistical explanation for different relationships of serum creatinine (Scr) vs. GFR across populations: preliminary results [Abstract]. J Am Soc Nephrol. 2005;16:319A.
46.
Stevens LALevey AS. Chronic kidney disease in the elderly—how to assess risk [Editorial]. N Engl J Med. 2005;352:2122-4. [PMID: 15901867]
47.
Coresh JStevens LAGreene TEggers OKusek JVan Lente Fet al. Comparison of GFR estimating equations using serum cystatin and creatinine: a pooled analysis of 1706 individuals [Abstract]. J Am Soc Nephrol. 2005;16:69A.

Comments

0 Comments
Sign In to Submit A Comment
Pierre Delanaye 17 August 2006
Estimated glomerular filtration rate: impact of the precision of the creatinine assay

The recent article about estimated glomerular filtration rate (GFR) published by Levey et al is remarkable (1). The authors suggest that the new equation may still have some bias and, especially, less precision in patients with GFR over 60 ml/min/1.73 m². This is even more important if GFR is over 90 ml/min/1.73 m². In the method section, the authors don't give the analytical coefficient of variation (CVa) of their assays (Beckman and enzymatic). This data is of importance especially for low or normal creatinine values. Indeed, the concept of critical difference (CD) is familiar to clinical biologists but should perhaps be reminded to internists. The CD of a biological variable includes the CVa and the intra -individual coefficient of variation (CVi). It is defined as the smallest change in a biological result which is not due to chance (2). The CD is calculated as followed: 1.414 x 1.96 x (CVa² + CVi²)0.5. The CVi of serum creatinine is 4% (3). The CVa of serum creatinine varies belong assays used and laboratories. A creatinine CVa as low as 2 % is rare but conceivable (4). With these CV values, the lowest CD for creatinine is 12%. A value of 0.8 mg/dl is thus not different from 0.704 and 0.896 mg/dl. However, as we have illustrated (5), these differences are not negligible for GFR estimation if creatinine and GFR are normal because small creatinine changes induce large GFR variations in this range. If we take the example of a white, 60 years old man, a creatinine of 0.8 mg/dl gives a result of 98.6 ml/min/1.73 m² with the MDRD equation. If creatinine values of 0.704 and 0.896 mg/dl are introduced, the results of the MDRD equations will be 114.3 and 86.5 ml/min/1.73m², respectively. The low precision of the MDRD equation, when GFR is normal, is thus also linked to the precision of the creatinine assay and to the biological variation of creatinine. This assertion is true for all creatinine-based equations. We think that an improvement of the precision of creatinine- based equation may be illusive in a non renal population. It is important for clinicians to keep this fact in mind when they analyze an estimated GFR and even more when they longitudinally follow a serial of estimated GFR in a patient with GFR over 60 ml/min/1.73m². It is perhaps more cautious to still give MDRD results as "over 60 and 90 ml/min/1.73m²" without giving precise, absolute values of GFR.

References

(1) Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 2006;145:247-54.

(2) Costongs GM, Janson PC, Bas BM, Hermans J, van Wersch JW, Brombacher PJ. Short-term and long-term intra-individual variations and critical differences of clinical chemical laboratory parameters. J Clin Chem Clin Biochem 1985;23:7-16.

(3) Ricos C, Alvarez V, Cava F, Garcia-Lario JV, Hernandez A, Jimenez CV et al. Current databases on biological variation: pros, cons and progress. Scand J Clin Lab Invest 1999;59:491-500.

(4) Froissart M, Rossert J, Jacquot C, Paillard M, Houillier P. Predictive performance of the modification of diet in renal disease and Cockcroft-Gault equations for estimating renal function. J Am Soc Nephrol 2005;16:763-73.

(5) Delanaye P, Cavalier E, Krzesinski JM, Chapelle JP. Why the MDRD equation should not be used in patients with normal renal function (and normal creatinine values)? Clin Nephrol 2006;66:147-8.

Conflict of Interest:

None declared

Andrew S. Levey 6 November 2006
Estimated glomerular filtration rate: impact of the precision of the creatinine assay

To the Editor,

Dr. Delanaye and colleagues question whether the precision of the creatinine assay within the reference range is sufficient for accurate GFR estimation. The Beckman Synchron CX3 assay used during the Modification of Diet in Renal Disease (MDRD) Study had an analytical coefficient of variation (CV) of 4.3% and 1.5% at creatinine values of 1.0 and 5.4 mg/dL, respectively (1). The Roche enzymatic assay used to calibrate the MDRD Study laboratory to standardized creatinine had an analytical CV of 2.0% and 1.8% at creatinine values of 0.89 and 5.86 mg/dL, respectively, in 2004 (n = 194) and 1.6% and 1.1% at creatinine values of 1.00 and 3.84 and gm/dL, respectively, in 2005 (n = 409). Thus, the analytical CV for the Roche enzymatic is as low or lower than that stated by Dr. Delanaye.

We agree with Dr. Delanaye that the effect of imprecision in the serum creatinine assay and biological variation in GFR estimates is greater at lower values for serum creatinine (equivalent to higher values for estimated GFR), and that is one of several important reasons for lesser accuracy of higher GFR estimates (2). For these reasons, current recommendations are to report estimated GFR as a numeric value only when it is less than 60 ml/min/1.73 m2 and to report ">60 ml/min/1.73 m2" for higher values. We believe this is sufficient for most clinical circumstances requiring the clinical assessment of kidney function. New filtration markers, such as cystatin C, and improvement in estimation equations may be required for more accurate GFR estimation at higher values. Until then, if more accurate assessment of kidney function is required in patients with estimated GFR >60 ml/min/1.73 m2, it is necessary to measure the clearance of an exogenous filtration marker or creatinine.

References:

1. Coresh J, Astor BC, McQuillen G, et al. Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis 2002;39:920-9.

2. Stevens LA, Coresh J, Levey AS. Assessing kidney function "“ measured and estimated glomerular filtration rate. N Engl J Med 2006; 354:2473-83.

Conflict of Interest:

None declared

Information & Authors

Information

Published In

cover image Annals of Internal Medicine
Annals of Internal Medicine
Volume 145Number 415 August 2006
Pages: 247 - 254

History

Published online: 15 August 2006
Published in issue: 15 August 2006

Keywords

Authors

Affiliations

Andrew S. Levey, MD
From Tufts-New England Medical Center, Boston, Massachusetts; Johns Hopkins Medical Institution, Baltimore, Maryland; Cleveland Clinic Foundation, Cleveland, Ohio; and National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland.
Josef Coresh, MD, PhD, MHS
From Tufts-New England Medical Center, Boston, Massachusetts; Johns Hopkins Medical Institution, Baltimore, Maryland; Cleveland Clinic Foundation, Cleveland, Ohio; and National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland.
Tom Greene, PhD
From Tufts-New England Medical Center, Boston, Massachusetts; Johns Hopkins Medical Institution, Baltimore, Maryland; Cleveland Clinic Foundation, Cleveland, Ohio; and National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland.
Lesley A. Stevens, MD, MS
From Tufts-New England Medical Center, Boston, Massachusetts; Johns Hopkins Medical Institution, Baltimore, Maryland; Cleveland Clinic Foundation, Cleveland, Ohio; and National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland.
Yaping (Lucy) Zhang, MS
From Tufts-New England Medical Center, Boston, Massachusetts; Johns Hopkins Medical Institution, Baltimore, Maryland; Cleveland Clinic Foundation, Cleveland, Ohio; and National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland.
Stephen Hendriksen, BA
From Tufts-New England Medical Center, Boston, Massachusetts; Johns Hopkins Medical Institution, Baltimore, Maryland; Cleveland Clinic Foundation, Cleveland, Ohio; and National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland.
John W. Kusek, PhD
From Tufts-New England Medical Center, Boston, Massachusetts; Johns Hopkins Medical Institution, Baltimore, Maryland; Cleveland Clinic Foundation, Cleveland, Ohio; and National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland.
Frederick Van Lente, PhD
From Tufts-New England Medical Center, Boston, Massachusetts; Johns Hopkins Medical Institution, Baltimore, Maryland; Cleveland Clinic Foundation, Cleveland, Ohio; and National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland.
for the Chronic Kidney Disease Epidemiology Collaboration*
From Tufts-New England Medical Center, Boston, Massachusetts; Johns Hopkins Medical Institution, Baltimore, Maryland; Cleveland Clinic Foundation, Cleveland, Ohio; and National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland.
Acknowledgments: The authors thank John Eckfeldt, PhD, and Amy Deysher for assistance.
Grant Support: By grants UO1 DK 053869, UO1 DK 067651, and UO1 DK 35073.
Disclosures: Grants received: A.S. Levey (National Institutes of Health, Amgen, National Kidney Foundation).
Corresponding Author: Andrew S. Levey, MD, Division of Nephrology, Tufts-New England Medical Center, 750 Washington Street, Box 391, Boston, MA 02111.
Correction: This article was corrected on 16 March 2021 to correct a statement about ascertainment of the participants' ethnicity.
Current Author Addresses: Drs. Levey and Stevens, Ms. Zhang, and Mr. Hendriksen: Division of Nephrology, Tufts-New England Medical Center, 750 Washington Street, Box 391, Boston, MA 02111.
Dr. Coresh: Johns Hopkins Medical Institution, 2024 East Monument Street, 2-645, Baltimore, MD 21205.
Drs. Greene and Van Lente: Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195.
Dr. Kusek: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 6707 Democracy Boulevard, Room 617, Bethesda, MD 20817.
Author Contributions: Conception and design: A.S. Levey, J. Coresh, T. Greene, L.A. Stevens, Y. Zhang, S. Hendriksen, J.W. Kusek, F. Van Lente.
Analysis and interpretation of the data: A.S. Levey, J. Coresh, T. Greene, L.A. Stevens, J.W. Kusek, F. Van Lente.
Drafting of the article: A.S. Levey, L.A. Stevens.
Critical revision of the article for important intellectual content: A.S. Levey, J. Coresh, T. Greene, L.A. Stevens, Y. Zhang, S. Hendriksen, J.W. Kusek, F. Van Lente.
Final approval of the article: A.S. Levey, J. Coresh, T. Greene, L.A. Stevens, Y. Zhang, S. Hendriksen, J.W. Kusek, F. Van Lente.
Provision of study materials or patients: A.S. Levey, T. Greene, J.W. Kusek, F. Van Lente.
Statistical expertise: J. Coresh, T. Greene, Y. Zhang.
Obtaining of funding: A.S. Levey, J. Coresh, T. Greene, F. Van Lente.
Administrative, technical, or logistic support: A.S. Levey, J. Coresh, T. Greene, L.A. Stevens, Y. Zhang, S. Hendriksen, J.W. Kusek, F. Van Lente.
Collection and assembly of data: A.S. Levey, J. Coresh, T. Greene, Y. Zhang, S. Hendriksen, F. Van Lente.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. For an editable text file, please select Medlars format which will download as a .txt file. Simply select your manager software from the list below and click Download.

For more information or tips please see 'Downloading to a citation manager' in the Help menu.

Format





Download article citation data for:
Andrew S. Levey, Josef Coresh, Tom Greene, et al; for the Chronic Kidney Disease Epidemiology Collaboration*. Using Standardized Serum Creatinine Values in the Modification of Diet in Renal Disease Study Equation for Estimating Glomerular Filtration Rate. Ann Intern Med.2006;145:247-254. [Epub 15 August 2006]. doi:10.7326/0003-4819-145-4-200608150-00004

View More

Login Options:
Purchase

You will be redirected to acponline.org to sign-in to Annals to complete your purchase.

Access to EPUBs and PDFs for FREE Annals content requires users to be registered and logged in. A subscription is not required. You can create a free account below or from the following link. You will be redirected to acponline.org to create an account that will provide access to Annals. If you are accessing the Free Annals content via your institution's access, registration is not required.

Create your Free Account

You will be redirected to acponline.org to create an account that will provide access to Annals.

View options

PDF/EPUB

View PDF/EPUB

Related in ACP Journals

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media