Reviews18 June 2002
    Author, Article, and Disclosure Information

    The application of molecular immunology techniques in the study of rheumatoid arthritis has resulted in an explosion of knowledge on the risk factors for the disease, predictors of disease severity, the molecular mechanisms of inflammatory responses, and mechanisms of tissue destruction. We know, for example, that inheriting certain genes in the major histocompatibility complex partly dictates susceptibility and severity of rheumatoid arthritis. These genes and others in the major histocompatibility complex are critical for the occurrence of immune responses both constructive (prevention of infection, surveillance for malignant cells) and destructive (development of autoimmune diseases). We also now understand mechanisms of cell communication, regulation of immune responses, how the cells that mediate immune responses and tissue injury accumulate in tissues, and how the injury occurs. The knowledge itself is satisfying, but more important, based on this knowledge, effective and reasonably safe treatments that address basic mechanisms of the disease process have been developed and are now widely used. In fact, the newer treatments represent the “tip of the iceberg,” and as our basic knowledge increases, so too will the armamentarium with which we can fight rheumatoid arthritis and other similar autoimmune diseases.

    For definitions of terms, see Glossary at end of text.

    References

    • 1. Decker JLMalone DGHaraoui BWahl SMSchrieber LKlippel JHet al NIH conference. Rheumatoid arthritis: evolving concepts of pathogenesis and treatment. Ann Intern Med1984;101:810-24. [PMID: 6093663] LinkGoogle Scholar
    • 2. Firestein GSThe immunopathogenesis of rheumatoid arthritis. Curr Opin Rheumatol1991;3:398-406. [PMID: 1883694] CrossrefMedlineGoogle Scholar
    • 3. Wordsworth BPBell JIThe immunogenetics of rheumatoid arthritis. Springer Semin Immunopathol1992;14:59-78. [PMID: 1440198] CrossrefMedlineGoogle Scholar
    • 4. Stastny PAssociation of the B-cell alloantigen DRw4 with rheumatoid arthritis. N Engl J Med1978;298:869-71. [PMID: 147420] CrossrefMedlineGoogle Scholar
    • 5. Nepom GTHansen JANepom BSThe molecular basis for HLA class II associations with rheumatoid arthritis. J Clin Immunol1987;7:1-7. [PMID: 3558732] CrossrefMedlineGoogle Scholar
    • 6. Nelson JLMickelson EMasewicz SBarrington RDugowson CKoepsell Tet al Dw14(DRB1*0404) is a Dw4-dependent risk factor for rheumatoid arthritis. Rethinking the “shared epitope” hypothesis. Tissue Antigens1991;38:145-51. [PMID: 1724805] CrossrefMedlineGoogle Scholar
    • 7. Weyand CMXie CGoronzy JJHomozygosity for the HLA-DRB1 allele selects for extraarticular manifestations in rheumatoid arthritis. J Clin Invest1992;89:2033-9. [PMID: 1602009] CrossrefMedlineGoogle Scholar
    • 8. Poulter LWDuke OHobbs SJanossy GPanayi GHistochemical discrimination of HLA-DR positive cell populations in the normal and arthritic synovial lining. Clin Exp Immunol1982;48:381-8. [PMID: 6213328] MedlineGoogle Scholar
    • 9. Klareskog LForsum UMalmnäs Tjernlund UKKabelitz DWigren AAppearance of anti-HLA-DR-reactive cells in normal and rheumatoid synovial tissue. Scand J Immunol1981;14:183-92. [PMID: 6458880] CrossrefMedlineGoogle Scholar
    • 10. Burmester GRDimitriu-Bona AWaters SJWinchester RJIdentification of three major synovial lining cell populations by monoclonal antibodies directed to Ia antigens and antigens associated with monocytes/macrophages and fibroblasts. Scand J Immunol1983;17:69-82. [PMID: 6573767] CrossrefMedlineGoogle Scholar
    • 11. Weyand CMOppitz UHicok KGoronzy JJSelection of T cell receptor V β elements by HLA-DR determinants predisposing to rheumatoid arthritis. Arthritis Rheum1992;35:990-8. [PMID: 1384516] CrossrefMedlineGoogle Scholar
    • 12. Smith JBBocchieri MHSherbin-Allen LBorofsky MAbruzzo JLOccurrence of interleukin-1 in human synovial fluid: detection by RIA, bioassay and presence of bioassay-inhibiting factors. Rheumatol Int1989;9:53-8. [PMID: 2814208] CrossrefMedlineGoogle Scholar
    • 13. Xu WDFirestein GSTaetle RKaushansky KZvaifler NJCytokines in chronic inflammatory arthritis. II. Granulocyte-macrophage colony-stimulating factor in rheumatoid synovial effusions. J Clin Invest1989;83:876-82. [PMID: 2646320] CrossrefMedlineGoogle Scholar
    • 14. Brennan FMChantry DTurner MFoxwell BMaini RFeldmann MDetection of transforming growth factor-β in rheumatoid arthritis synovial tissue: lack of effect on spontaneous cytokine production in joint cell cultures. Clin Exp Immunol1990;81:278-85. [PMID: 2201470] CrossrefMedlineGoogle Scholar
    • 15. Buchan GBarrett KTurner MChantry DMaini RNFeldmann MInterleukin-1 and tumour necrosis factor mRNA expression in rheumatoid arthritis: prolonged production of IL-1 α. Clin Exp Immunol1988;73:449-55. [PMID: 3264773] MedlineGoogle Scholar
    • 16. Chu CQField MAbney EZheng RQAllard SFeldmann Met al Transforming growth factor-β 1 in rheumatoid synovial membrane and cartilage/pannus junction. Clin Exp Immunol1991;86:380-6. [PMID: 1747946] CrossrefMedlineGoogle Scholar
    • 17. Suzuki NNakajima AYoshino SMatsushima KYagita HOkumura KSelective accumulation of CCR5+ T lymphocytes into inflamed joints of rheumatoid arthritis. Int Immunol1999;11:553-9. [PMID: 10323208] CrossrefMedlineGoogle Scholar
    • 18. Borzi RMMazzetti IMacor SSilvestri TBassi ACattini Let al Flow cytometric analysis of intracellular chemokines in chondrocytes in vivo: constitutive expression and enhancement in osteoarthritis and rheumatoid arthritis. FEBS Lett1999;455:238-42. [PMID: 10437780] CrossrefMedlineGoogle Scholar
    • 19. Mack MBrühl HGruber RJaeger CCihak JEiter Vet al Predominance of mononuclear cells expressing the chemokine receptor CCR5 in synovial effusions of patients with different forms of arthritis. Arthritis Rheum1999;42:981-8. [PMID: 10323454] CrossrefMedlineGoogle Scholar
    • 20. Breedveld FCKalden JRSmolen JSAdvances in targeted therapies: TNFalpha blockade in clinical practice. Ann Rheum Dis1999;58 Suppl 1 I1. [PMID: 0010577966] CrossrefMedlineGoogle Scholar
    • 21. Panayi GSTargeting of cells involved in the pathogenesis of rheumatoid arthritis. Rheumatology Oxford1999;38 Suppl 2 8-10. [PMID: 10646482] MedlineGoogle Scholar
    • 22. Schulze-Koops HDavis LSHaverty TPWacholtz MCLipsky PEReduction of Th1 cell activity in the peripheral circulation of patients with rheumatoid arthritis after treatment with a non-depleting humanized monoclonal antibody to CD4. J Rheumatol1998;25:2065-76. [PMID: 9818646] MedlineGoogle Scholar
    • 23. Bresnihan BAlvaro-Gracia JMCobby MDoherty MDomljan ZEmery Pet al Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. Arthritis Rheum1998;41:2196-204. [PMID: 9870876] CrossrefMedlineGoogle Scholar
    • 24. Moreland LWSchiff MHBaumgartner SWTindall EAFleischmann RMBulpitt KJet al Etanercept therapy in rheumatoid arthritis. A randomized, controlled trial. Ann Intern Med1999;130:478-86. [PMID: 10075615] LinkGoogle Scholar
    • 25. Harriman GHarper LKSchaible TFSummary of clinical trials in rheumatoid arthritis using infliximab, an anti-TNFalpha treatment. Ann Rheum Dis1999;58 Suppl 1 I61-4. [PMID: 10577975] CrossrefMedlineGoogle Scholar
    • 26. Kavanaugh AFDavis LSNichols LANorris SHRothlein RScharschmidt LAet al Treatment of refractory rheumatoid arthritis with a monoclonal antibody to intercellular adhesion molecule 1. Arthritis Rheum1994;37:992-9. [PMID: 7912930] CrossrefMedlineGoogle Scholar
    • 27. Kavanaugh AFSchulze-Koops HDavis LSLipsky PERepeat treatment of rheumatoid arthritis patients with a murine anti-intercellular adhesion molecule 1 monoclonal antibody. Arthritis Rheum1997;40:849-53. [PMID: 9153545] CrossrefMedlineGoogle Scholar
    • 28. Westermann JEngelhardt BHoffmann JCMigration of T cells in vivo: molecular mechanisms and clinical implications. Ann Intern Med2001;135:279-95. [PMID: 11511143] LinkGoogle Scholar
    • 29. Masi ATMaldonado-Cocco JAKaplan SBFeigenbaum SLChandler RWProspective study of the early course of rheumatoid arthritis in young adults: comparison of patients with and without rheumatoid factor positivity at entry and identification of variables correlating with outcome. Semin Arthritis Rheum1976;4:299-326. [PMID: 1273600] CrossrefMedlineGoogle Scholar
    • 30. Jacoby RKJayson MICosh JAOnset, early stages, and prognosis of rheumatoid arthritis: a clinical study of 100 patients with 11-year follow-up. Br Med J1973;2:96-100. [PMID: 4700332] CrossrefMedlineGoogle Scholar
    • 31. Ollier WThomson WPopulation genetics of rheumatoid arthritis. Rheum Dis Clin North Am1992;18:741-59. [PMID: 1280845] CrossrefMedlineGoogle Scholar
    • 32. Crilly AMaiden NCapell HAMadhok RGenotyping for disease associated HLA DR β 1 alleles and the need for early joint surgery in rheumatoid arthritis: a quantitative evaluation. Ann Rheum Dis1999;58:114-7. [PMID: 10343527] CrossrefMedlineGoogle Scholar
    • 33. Weyand CMHicok KCConn DLGoronzy JJThe influence of HLA-DRB1 genes on disease severity in rheumatoid arthritis. Ann Intern Med1992;117:801-6. [PMID: 1416553] LinkGoogle Scholar
    • 34. Edwards JCThe nature and origins of synovium: experimental approaches to the study of synoviocyte differentiation. J Anat1994;184 Pt 3 493-501. [PMID: 7928638] MedlineGoogle Scholar
    • 35. Girard JPSpringer TAHigh endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunol Today1995;16:449-57. [PMID: 7546210] CrossrefMedlineGoogle Scholar
    • 36. Tak PPThurkow EWDaha MRKluin PMSmeets TJMeinders AEet al Expression of adhesion molecules in early rheumatoid synovial tissue. Clin Immunol Immunopathol1995;77:236-42. [PMID: 7586733] CrossrefMedlineGoogle Scholar
    • 37. Koch AEBurrows JCHaines GKCarlos TMHarlan JMLeibovich SJImmunolocalization of endothelial and leukocyte adhesion molecules in human rheumatoid and osteoarthritic synovial tissues. Lab Invest1991;64:313-20. [PMID: 1706003] MedlineGoogle Scholar
    • 38. Cush JJPietschmann POppenheimer-Marks NLipsky PEThe intrinsic migratory capacity of memory T cells contributes to their accumulation in rheumatoid synovium. Arthritis Rheum1992;35:1434-44. [PMID: 1282007] CrossrefMedlineGoogle Scholar
    • 39. Thomas RMcIlraith MDavis LSLipsky PERheumatoid synovium is enriched in CD45RBdim mature memory T cells that are potent helpers for B cell differentiation. Arthritis Rheum1992;35:1455-65. [PMID: 1472123] CrossrefMedlineGoogle Scholar
    • 40. Mosmann TRCoffman RLTH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol1989;7:145-73. [PMID: 2523712] CrossrefMedlineGoogle Scholar
    • 41. de Waal Malefyt RAbrams JBennett BFigdor CGde Vries JEInterleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med1991;174:1209-20. [PMID: 1940799] CrossrefMedlineGoogle Scholar
    • 42. de Waal Malefyt RYssel Hde Vries JEDirect effects of IL-10 on subsets of human CD4 + T cell clones and resting T cells. Specific inhibition of IL-2 production and proliferation. J Immunol1993;150:4754-65. [PMID: 7684412] MedlineGoogle Scholar
    • 43. Wu JCunha FQLiew FYWeiser WYIL-10 inhibits the synthesis of migration inhibitory factor and migration inhibitory factor-mediated macrophage activation. J Immunol1993;151:4325-32. [PMID: 7691945] MedlineGoogle Scholar
    • 44. Kasid ABell GIDirector EPEffects of transforming growth factor-β on human lymphokine-activated killer cell precursors. Autocrine inhibition of cellular proliferation and differentiation to immune killer cells. J Immunol1988;141:690-8. [PMID: 3133414] MedlineGoogle Scholar
    • 45. Günther MHaubeck HDvan de Leur EBläser JBender SGütgemann Iet al Transforming growth factor β 1 regulates tissue inhibitor of metalloproteinases-1 expression in differentiated human articular chondrocytes. Arthritis Rheum1994;37:395-405. [PMID: 8129795] CrossrefMedlineGoogle Scholar
    • 46. van der Veen RCStohlman SAEncephalitogenic Th1 cells are inhibited by Th2 cells with related peptide specificity: relative roles of interleukin (IL)-4 and IL-10. J Neuroimmunol1993;48:213-20. [PMID: 8227319] CrossrefMedlineGoogle Scholar
    • 47. Harris EDRheumatoid arthritis [Editorial]. Curr Opin Rheumatol1994;6:287-9. [PMID: 8060763] CrossrefMedlineGoogle Scholar
    • 48. Elliott MJMaini RNNew directions for biological therapy in rheumatoid arthritis. Int Arch Allergy Immunol1994;104:112-25. [PMID: 8199454] CrossrefMedlineGoogle Scholar
    • 49. Holt ICooper RGHopkins SJRelationships between local inflammation, interleukin-6 concentration and the acute phase protein response in arthritis patients. Eur J Clin Invest1991;21:479-84. [PMID: 1752286] CrossrefMedlineGoogle Scholar
    • 50. Schulze-Koops HDavis LSKavanaugh AFLipsky PEElevated cytokine messenger RNA levels in the peripheral blood of patients with rheumatoid arthritis suggest different degrees of myeloid cell activation. Arthritis Rheum1997;40:639-47. [PMID: 9125245] CrossrefMedlineGoogle Scholar
    • 51. Hopkins SJHumphreys MJayson MICytokines in synovial fluid. I. The presence of biologically active and immunoreactive IL-1. Clin Exp Immunol1988;72:422-7. [PMID: 3262460] MedlineGoogle Scholar
    • 52. Firestein GSAlvaro-Gracia JMMaki RAlvaro-Garcia JMQuantitative analysis of cytokine gene expression in rheumatoid arthritis. J Immunol1990;144:3347-53. [PMID: 2109776] MedlineGoogle Scholar
    • 53. Campbell IKRoughley PJMort JSThe action of human articular-cartilage metalloproteinase on proteoglycan and link protein. Similarities between products of degradation in situ and in vitro. Biochem J1986;237:117-22. [PMID: 3541894] CrossrefMedlineGoogle Scholar
    • 54. Brennan FMZachariae COChantry DLarsen CGTurner MMaini RNet al Detection of interleukin 8 biological activity in synovial fluids from patients with rheumatoid arthritis and production of interleukin 8 mRNA by isolated synovial cells. Eur J Immunol1990;20:2141-4. [PMID: 2209707] CrossrefMedlineGoogle Scholar
    • 55. Katsikis PDChu CQBrennan FMMaini RNFeldmann MImmunoregulatory role of interleukin 10 in rheumatoid arthritis. J Exp Med1994;179:1517-27. [PMID: 8163935] CrossrefMedlineGoogle Scholar
    • 56. Roberts ABMcCune BKSporn MBTGF-β: regulation of extracellular matrix. Kidney Int1992;41:557-9. [PMID: 1573828] CrossrefMedlineGoogle Scholar
    • 57. Haynes MKSmith JBCan Th1-like immune responses explain the immunopathology of recurrent spontaneous miscarriage? J Reprod Immunol1997;35:65-71. [PMID: 9373859] CrossrefMedlineGoogle Scholar
    • 58. Paliard XWest SGLafferty JAClements JRKappler JWMarrack Pet al Evidence for the effects of a superantigen in rheumatoid arthritis. Science1991;253:325-9. [PMID: 1857971] CrossrefMedlineGoogle Scholar
    • 59. Jenkins RNNikaein AZimmermann AMeek KLipsky PET cell receptor V β gene bias in rheumatoid arthritis. J Clin Invest1993;92:2688-701. [PMID: 8254025] CrossrefMedlineGoogle Scholar
    • 60. Howell MDDiveley JPLundeen KAEsty AWinters STCarlo DJet al Limited T-cell receptor β-chain heterogeneity among interleukin 2 receptor-positive synovial T cells suggests a role for superantigen in rheumatoid arthritis. Proc Natl Acad Sci U S A1991;88:10921-5. [PMID: 1660155] CrossrefMedlineGoogle Scholar
    • 61. Friedman SMCrow MKTumang JRTumang MXu YQHodtsev ASet al Characterization of human T cells reactive with the Mycoplasma arthritidis-derived superantigen (MAM): generation of a monoclonal antibody against V β 17, the T cell receptor gene product expressed by a large fraction of MAM-reactive human T cells. J Exp Med1991;174:891-900. [PMID: 1833503] CrossrefMedlineGoogle Scholar
    • 62. Stamenkovic IStegagno MWright KAKrane SMAmento EPColvin RBet al Clonal dominance among T-lymphocyte infiltrates in arthritis. Proc Natl Acad Sci U S A1988;85:1179-83. [PMID: 2963340] CrossrefMedlineGoogle Scholar
    • 63. Cooper SMDier DLRoessner KDBudd RCNicklas JADiversity of rheumatoid synovial tissue T cells by T cell receptor analysis. Oligoclonal expansion in interleukin-2-responsive cells. Arthritis Rheum1991;34:537-46. [PMID: 2025307] CrossrefMedlineGoogle Scholar
    • 64. Williams WVFang QDemarco DVonFeldt JZurier RBWeiner DBRestricted heterogeneity of T cell receptor transcripts in rheumatoid synovium. J Clin Invest1992;90:326-33. [PMID: 1386608] CrossrefMedlineGoogle Scholar
    • 65. Berenbaum FThomas GPoiraudeau SBéréziat GCorvol MTMasliah JInsulin-like growth factors counteract the effect of interleukin 1 β on type II phospholipase A2 expression and arachidonic acid release by rabbit articular chondrocytes. FEBS Lett1994;340:51-5. [PMID: 8119407] CrossrefMedlineGoogle Scholar
    • 66. Chen QDaniel VMaher DWHersey PProduction of IL-10 by melanoma cells: examination of its role in immunosuppression mediated by melanoma. Int J Cancer1994;56:755-60. [PMID: 8314354] CrossrefMedlineGoogle Scholar
    • 67. Gudmundsson SRönnelid JKarlsson-Parra ALysholm JGudbjörnsson BWidenfalk Bet al T-cell receptor V-gene usage in synovial fluid and synovial tissue from RA patients. Scand J Immunol1992;36:681-8. [PMID: 1439580] CrossrefMedlineGoogle Scholar
    • 68. Yoshizaki KNishimoto NMihara MKishimoto TTherapy of rheumatoid arthritis by blocking IL-6 signal transduction with a humanized anti-IL-6 receptor antibody. Springer Semin Immunopathol1998;20:247-59. [PMID: 9836380] CrossrefMedlineGoogle Scholar
    • 69. Taylor-Robinson AWLiew FYSevern AXu DMcSorley SJGarside Pet al Regulation of the immune response by nitric oxide differentially produced by T helper type 1 and T helper type 2 cells. Eur J Immunol1994;24:980-4. [PMID: 8149966] CrossrefMedlineGoogle Scholar
    • 70. Lotz MThe role of nitric oxide in articular cartilage damage. Rheum Dis Clin North Am1999;25:269-82. [PMID: 10356417] CrossrefMedlineGoogle Scholar
    • 71. Evans CHNitric oxide: what role does it play in inflammation and tissue destruction? Agents Actions Suppl1995;47:107-16. [PMID: 7540350] MedlineGoogle Scholar
    • 72. Farrell AJBlake DRPalmer RMMoncada SIncreased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann Rheum Dis1992;51:1219-22. [PMID: 1466599] CrossrefMedlineGoogle Scholar
    • 73. Weinberg JBGranger DLPisetsky DSSeldin MFMisukonis MAMason SNet al The role of nitric oxide in the pathogenesis of spontaneous murine autoimmune disease: increased nitric oxide production and nitric oxide synthase expression in MRL-lpr/lpr mice, and reduction of spontaneous glomerulonephritis and arthritis by orally administered NG-monomethyl-L-arginine. J Exp Med1994;179:651-60. [PMID: 7507509] MedlineGoogle Scholar
    • 74. Firestein GSYeo MZvaifler NJApoptosis in rheumatoid arthritis synovium. J Clin Invest1995;96:1631-8. [PMID: 7657832] CrossrefMedlineGoogle Scholar
    • 75. Voelkel-Johnson CEntingh AJWold WSGooding LRLaster SMActivation of intracellular proteases is an early event in TNF-induced apoptosis. J Immunol1995;154:1707-16. [PMID: 7836755] MedlineGoogle Scholar
    • 76. Wong GHGoeddel DVFas antigen and p55 TNF receptor signal apoptosis through distinct pathways. J Immunol1994;152:1751-5. [PMID: 7509828] MedlineGoogle Scholar
    • 77. Thornberry NAMolineaux SMInterleukin-1 β converting enzyme: a novel cysteine protease required for IL-1 β production and implicated in programmed cell death. Protein Sci1995;4:3-12. [PMID: 7773174] CrossrefMedlineGoogle Scholar
    • 78. Schirmer MVallejo ANWeyand CMGoronzy JJResistance to apoptosis and elevated expression of Bcl-2 in clonally expanded CD4+ CD28- T cells from rheumatoid arthritis patients. J Immunol1998;161:1018-25. [PMID: 9670983] MedlineGoogle Scholar
    • 79. Breedveld FCFuture trends in the treatment of rheumatoid arthritis: cytokine targets. Rheumatology Oxford1999;38 Suppl 2 11-3. [PMID: 10646483] MedlineGoogle Scholar
    • 80. van Roon JAvan Roy JLGmelig-Meyling FHLafeber FPBijlsma JWPrevention and reversal of cartilage degradation in rheumatoid arthritis by interleukin-10 and interleukin-4. Arthritis Rheum1996;39:829-35. [PMID: 8639180] CrossrefMedlineGoogle Scholar
    • 81. St Clair EWInterleukin 10 treatment for rheumatoid arthritis. Ann Rheum Dis1999;58 Suppl 1 I99-I102. [PMID: 10577984] CrossrefMedlineGoogle Scholar
    • 82. Herzog CWalker CMüller WRieber PReiter CRiethmüller Get al Anti-CD4 antibody treatment of patients with rheumatoid arthritis: I. Effect on clinical course and circulating T cells. J Autoimmun1989;2:627-42. [PMID: 2572230] CrossrefMedlineGoogle Scholar
    • 83. Strand VLipsky PECannon GWCalabrese LHWiesenhutter CCohen SBet al Effects of administration of an anti-CD5 plus immunoconjugate in rheumatoid arthritis. Results of two phase II studies. The CD5 Plus Rheumatoid Arthritis Investigators Group. Arthritis Rheum1993;36:620-30. [PMID: 7683881] CrossrefMedlineGoogle Scholar
    • 84. Moreland LWHaverty TPWacholtz MCKnowles RWBucy RPHeck LWet al Nondepleting humanized anti-CD4 monoclonal antibody in patients with refractory rheumatoid arthritis. J Rheumatol1998;25:221-8. [PMID: 9489810] MedlineGoogle Scholar
    • 85. Das PBradley DSGeluk AGriffiths MMLuthra HSDavid CSAn HLA-DRB1*0402 derived peptide (HV3 65-79) prevents collagen-induced arthritis in HLA-DQ8 transgenic mice. Hum Immunol1999;60:575-82. [PMID: 10426274] CrossrefMedlineGoogle Scholar
    • 86. Hammer JGallazzi FBono EKarr RWGuenot JValsasnini Pet al Peptide binding specificity of HLA-DR4 molecules: correlation with rheumatoid arthritis association. J Exp Med1995;181:1847-55. [PMID: 7722459] CrossrefMedlineGoogle Scholar
    • 87. Hammer JTakacs BSinigaglia FIdentification of a motif for HLA-DR1 binding peptides using M13 display libraries. J Exp Med1992;176:1007-13. [PMID: 1402647] CrossrefMedlineGoogle Scholar
    • 88. Dittel BNSant'Angelo DBJaneway CAPeptide antagonists inhibit proliferation and the production of IL-4 and/or IFN-γ in T helper 1, T helper 2, and T helper 0 clones bearing the same TCR. J Immunol1997;158:4065-73. [PMID: 9126964] MedlineGoogle Scholar
    • 89. Moreland LWHeck LWKoopman WJSaway PAAdamson TCFronek Zet al V β 17 T cell receptor peptide vaccination in rheumatoid arthritis: results of phase I dose escalation study. J Rheumatol1996;23:1353-62. [PMID: 8856613] MedlineGoogle Scholar
    • 90. Evans CHRobbins PDProgress toward the treatment of arthritis by gene therapy. Ann Med1995;27:543-6. [PMID: 8541029] CrossrefMedlineGoogle Scholar
    • 91. Kobayashi TOkamoto KKobata THasunuma TKato THamada Het al Novel gene therapy for rheumatoid arthritis by FADD gene transfer: induction of apoptosis of rheumatoid synoviocytes but not chondrocytes. Gene Ther2000;7:527-33. [PMID: 10757027] CrossrefMedlineGoogle Scholar
    • 92. Yao QGlorioso JCEvans CHRobbins PDKovesdi IOligino TJet al Adenoviral mediated delivery of FAS ligand to arthritic joints causes extensive apoptosis in the synovial lining. J Gene Med2000;2:210-9. [PMID: 10894267] CrossrefMedlineGoogle Scholar