Articles18 July 2000
A Randomized, Controlled Trial
    Author, Article, and Disclosure Information

    Abstract

    Background:

    The independent effects of diet- or exercise-induced weight loss on the reduction of obesity and related comorbid conditions are not known. The effects of exercise without weight loss on fat distribution and other risk factors are also unclear.

    Objective:

    To determine the effects of equivalent diet- or exercise-induced weight loss and exercise without weight loss on subcutaneous fat, visceral fat, skeletal muscle mass, and insulin sensitivity in obese men.

    Design:

    Randomized, controlled trial.

    Setting:

    University research center.

    Participants:

    52 obese men (mean body mass index [±SD], 31.3 ± 2.0 kg/m2) with a mean waist circumference of 110.1 ± 5.8 cm.

    Intervention:

    Participants were randomly assigned to one of four study groups (diet-induced weight loss, exercise-induced weight loss, exercise without weight loss, and control) and were observed for 3 months.

    Measurements:

    Change in total, subcutaneous, and visceral fat; skeletal muscle mass; cardiovascular fitness; glucose tolerance and insulin sensitivity.

    Results:

    Body weight decreased by 7.5 kg (8%) in both weight loss groups and did not change in the exercise without weight loss and control groups. Compared with controls, cardiovascular fitness (peak oxygen uptake) in the exercise groups improved by approximately 16% (P < 0.01). Although total fat decreased in both weight loss groups (P < 0.001), the average reduction was 1.3 kg (95% CI, 0.3 to 2.3 kg) greater in the exercise-induced weight loss group than in the diet-induced weight loss group (P = 0.03). Similar reductions in abdominal subcutaneous, visceral, and visceral fat–to–subcutaneous fat ratios were observed in the weight loss groups (P < 0.001). Abdominal and visceral fat also decreased in the exercise without weight loss group (P = 0.001). Plasma glucose and insulin values (fasting and oral glucose challenge) did not change in the treatment groups compared with controls (P = 0.10 for all comparisons). Average improvement in glucose disposal was similar in the diet-induced weight loss group (5.6 mg/kg skeletal muscle per minute) and in the exercise-induced weight loss group (7.2 mg/kg skeletal muscle per minute) (P > 0.2). However, these values were significantly greater than those in the control and exercise without weight loss groups (P < 0.001).

    Conclusions:

    Weight loss induced by increased daily physical activity without caloric restriction substantially reduces obesity (particularly abdominal obesity) and insulin resistance in men. Exercise without weight loss reduces abdominal fat and prevents further weight gain.

    References

    • 1. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation on Obesity, Geneva, 3-5 June 1997. Geneva: World Health Organization; 1997. Google Scholar
    • 2. Larsson BBjörntorp PTibblin GThe health consequences of moderate obesity. Int J Obes1981;5:97-116. MedlineGoogle Scholar
    • 3. Kahn HAHerman JBMedalie JHNeufeld HNRiss EGoldbourt UFactors related to diabetes incidence: a multivariate analysis of two years observation on 10,000 men. The Israel Ischemic Heart Disease Study. J Chronic Dis1971;23:617-29. CrossrefMedlineGoogle Scholar
    • 4. Stamler RStamler JRiedlinger WFAlgera GRoberts RHWeight and blood pressure. Findings in hypertension screening in 1 million Americans. JAMA1978;240:1607-10. CrossrefMedlineGoogle Scholar
    • 5. Dyer ARElliott PThe INTERSALT study: relations of body mass index to blood pressure. INTERSALT Co-operative Research Group. J Hum Hypertens1989;3:299-308. MedlineGoogle Scholar
    • 6. Hubert HBFeinleib MMcNamara PMCastelli WPObesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation1983;67:968-77. CrossrefMedlineGoogle Scholar
    • 7. Rexrode KMHennekens CHWillett WCColditz GAStampfer MJRich-Edwards JWet al A prospective study of body mass index, weight change, and risk of stroke in women. JAMA1997;277:1539-45. CrossrefMedlineGoogle Scholar
    • 8. Després JPMoorjani SLupien PJTremblay ANadeau ABouchard CRegional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis1990;10:497-511. CrossrefMedlineGoogle Scholar
    • 9. Després JPLemieux SLamarche BPrud'homme DMoorjani SBrun LDet al The insulin resistance-dyslipidemic syndrome: contribution of visceral obesity and therapeutic implications. Int J Obes Relat Metab Disord1995;19 Suppl 1 S76-86. MedlineGoogle Scholar
    • 10. Ross RFortier LHudson RSeparate associations between visceral and subcutaneous adipose tissue distribution, insulin and glucose levels in obese women. Diabetes Care1996;19:1404-11. CrossrefMedlineGoogle Scholar
    • 11. Goodpaster BHThaete FLSimoneau JAKelley DESubcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes1997;46:1579-85. CrossrefMedlineGoogle Scholar
    • 12. Williamson DFSerdula MKAnda RFLevy AByers TWeight loss attempts in adults: goals, duration, and rate of weight loss. Am J Public Health1992;82:1251-7. CrossrefMedlineGoogle Scholar
    • 13. Schulz LOSchoeller DAA compilation of total daily energy expenditures and body weights in healthy adults. Am J Clin Nutr1994;60:676-81. CrossrefMedlineGoogle Scholar
    • 14. National Institutes of HealthClinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the evidence report. Obes Res1998;6 Suppl 2 51S-209S. MedlineGoogle Scholar
    • 15. Miller WCKoceja DMHamilton EJA meta-analysis of the past 25 years of weight loss research using diet, exercise or diet plus exercise intervention. Int J Obes Relat Metab Disord1997;21:941-7. CrossrefMedlineGoogle Scholar
    • 16. Garrow JSSummerbell CDMeta-analysis: effect of exercise, with or without dieting, on the body composition of overweight subjects. Eur J Clin Nutr1995;49:1-10. MedlineGoogle Scholar
    • 17. Ballor DLPoehlman ETExercise-training enhanced fat-free mass preservation during diet-induced weight loss: a meta-analytical finding. Int J Obes Relat Metab Disord1994;18:35-40. MedlineGoogle Scholar
    • 18. Mikines KJSonne BFarrell PATronier BGalbo HEffect of physical exercise on sensitivity and responsiveness to insulin in humans. Am J Physiol1988;254 3 Pt 1 E248-59. MedlineGoogle Scholar
    • 19. Perseghin GPrice TBPetersen KFRoden MCline GWGerow Ket al Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N Engl J Med1996;335:1357-62. CrossrefMedlineGoogle Scholar
    • 20. Goodpaster BHKelley DEWing RRMeier AThaete FLEffects of weight loss on regional fat distribution and insulin sensitivity in obesity. Diabetes1999;48:839-47. CrossrefMedlineGoogle Scholar
    • 21. Niskanen LUusitupa MSarlund HSiitonen OPaljärvi LLaakso MThe effects of weight loss on insulin sensitivity, skeletal muscle composition and capillary density in obese non-diabetic subjects. Int J Obes Relat Metab Disord1996;20:154-60. MedlineGoogle Scholar
    • 22. Friedman JEDohm GLLeggett-Frazier NElton CWTapscott EBPories WPet al Restoration of insulin responsiveness in skeletal muscle of morbidly obese patients after weight loss. J Clin Invest1992;89:701-5. CrossrefMedlineGoogle Scholar
    • 23. Rice BJanssen IHudson RRoss REffects of aerobic or resistance exercise and/or diet on glucose tolerance and plasma insulin levels in obese men. Diabetes Care1999;22:684-91. CrossrefMedlineGoogle Scholar
    • 24. Dengel DRPratley REHagberg JMRogus EMGoldberg APDistinct effects of aerobic exercise training and weight loss on glucose homeostasis in obese sedentary men. J Appl Physiol1996;81:318-25. CrossrefMedlineGoogle Scholar
    • 25. Segal KREdano AAbalos AAlbu JBlando LTomas MBet al Effect of exercise training on insulin sensitivity and glucose metabolism in lean, obese, and diabetic men. J Appl Physiol1991;71:2402-11. CrossrefMedlineGoogle Scholar
    • 26. Lamarche BTchernof AMauriege PCantin BDagenais GRLupien PJet al Fasting insulin and apolipoprotein B levels and low-density lipoprotein particle size as risk factors for ischemic heart disease. JAMA1998;279:1955-61. CrossrefMedlineGoogle Scholar
    • 27. Harris JABenedict FFA Biometric Study of Basal Metabolism in Man. Washington, DC: Carnegie Institution of Washington; 1919. Google Scholar
    • 28. Jones PJJacobs IMorris ADucharme MBAdequacy of food rations in soldiers during an arctic exercise measured by doubly labeled water. J Appl Physiol1993;75:1790-7. CrossrefMedlineGoogle Scholar
    • 29. DeWeir JBNew method for calculating metabolic rate with special reference to protein metabolism. J Physiol Lond1949;109:1-9. CrossrefGoogle Scholar
    • 30. Ross RRissanen JPedwell HClifford JShragge PInfluence of diet and exercise on skeletal muscle and visceral adipose tissue in men. J Appl Physiol1996;81:2445-55. CrossrefMedlineGoogle Scholar
    • 31. Mitsiopoulos NBaumgartner RNHeymsfield SBLyons WGallager DRoss RCadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol1998;85:115-22. CrossrefMedlineGoogle Scholar
    • 32. Snyder WSCooke MJMnassett ESLarhansen LTHowells GPTipton IHReport of the Task Group on Reference Man. Oxford: Pergamon; 1975. Google Scholar
    • 33. Allison DBPaultre FMaggio CMezzitis NPi-Sunyer FXThe use of areas under the curve in diabetes research. Diabetes Care1995;18:245-50. CrossrefMedlineGoogle Scholar
    • 34. King ACTribble DLThe role of exercise in weight regulation in nonathletes. Sports Med1991;11:331-49. CrossrefMedlineGoogle Scholar
    • 35. NIH Consensus Development Panel on Physical Activity and Cardiovascular HealthPhysical activity and cardiovascular health. JAMA1996;276:241-6. CrossrefMedlineGoogle Scholar
    • 36. Ross REffects of diet- and exercise-induced weight loss on visceral adipose tissue in men and women. Sports Med1997;24:55-64. CrossrefMedlineGoogle Scholar
    • 37. Fried SKLeibel RLEdens NKKral JGLipolysis in intraabdominal adipose tissue of obese women and men. Obes Res1993;1:443-8. CrossrefMedlineGoogle Scholar
    • 38. Meek SENair KSJensen MDInsulin regulation of regional free fatty acid metabolism. Diabetes1999;48:10-4. CrossrefMedlineGoogle Scholar
    • 39. Després JPLamarche BEffects of diet and physical activity on adiposity and body fat distribution: implications for the prevention of cardiovascular disease. Nutr Res Rev1993;6:137-59. CrossrefMedlineGoogle Scholar
    • 40. Williams MJHunter GRKekes-Szabo TTrueth MSSnyder SBerland Let al Intra-abdominal adipose tissue cut-points related to elevated cardiovascular risk in women. Int J Obes Relat Metab Disord1996;20:613-7. MedlineGoogle Scholar
    • 41. Dattilo AMKris-Etherton PMEffects of weight reduction on blood lipids and lipoproteins: a meta-analysis. Am J Clin Nutr1992;56:320-8. CrossrefMedlineGoogle Scholar
    • 42. Mourier AGautier JFDe Kerviler EBigard AXVillette JMGarnier JPet al Mobilization of visceral adipose tissue related to the improvement in insulin sensitivity in response to physical training in NIDDM. Effects of branched-chain amino acid supplements. Diabetes Care1997;20:385-91. CrossrefMedlineGoogle Scholar
    • 43. Mott DMLillioja SBogardus COvernutrition induced decrease in insulin action for glucose storage: in vivo and in vitro in man. Metabolism1986;35:160-5. CrossrefMedlineGoogle Scholar
    • 44. Olefsky JCrapo PAGinsberg HReaven GMMetabolic effects of increased caloric intake in man. Metabolism1975;24:495-503. CrossrefMedlineGoogle Scholar
    • 45. Kelley DEEffects of weight loss on glucose homeostasis in NIDDM. Diabetes Rev1995;3:366-77. Google Scholar
    • 46. Widén EIMEriksson JGGroop LCMetformin normalizes nonoxidative glucose metabolism in insulin-resistant normoglycemic first-degree relatives of patients with NIDDM. Diabetes1992;41:354-8. CrossrefMedlineGoogle Scholar
    • 47. Nolan JJLudvik BBeerdsen PJoyce MOlefsky JImprovement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med1994;331:1188-93. CrossrefMedlineGoogle Scholar
    • 48. Henriksson JInfluence of exercise on insulin sensitivity. J Cardiovasc Risk1995;2:303-9. CrossrefMedlineGoogle Scholar
    • 49. Blair SNKohl HWPaffenbarger RSClark DGCooper KHGibbons LWPhysical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA1989;262:2395-401. CrossrefMedlineGoogle Scholar
    • 50. Paffenbarger RSHyde RTWing ALLee IMJung DLKampert JBThe association of changes in physical-activity level and other lifestyle characteristics with mortality among men. N Engl J Med1993;328:538-45. CrossrefMedlineGoogle Scholar
    • 51. Helmrich SPRagland DRLeung RWPaffenbarger RSPhysical activity and reduced occurrence of non-insulin dependent diabetes mellitus. N Engl J Med1991;325:147-52. CrossrefMedlineGoogle Scholar
    • 52. Mayer-Davis EJD'Agostino RKarter AJHaffner SMRewers MJSaad Met al Intensity and amount of physical activity in relation to insulin sensitivity: the Insulin Resistance Atherosclerosis Study. JAMA1998;279:669-74. CrossrefMedlineGoogle Scholar
    • 53. Pate RRPratt MBlair SNHaskell WLMacera CABouchard Cet al Physical activity and public health. A recommendation for the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA1995;273:402-7. CrossrefMedlineGoogle Scholar
    • 54. Kayman SBruvold WStern JSMaintenance and relapse after weight loss in women: behavioral aspects. Am J Clin Nutr1990;52:800-7. CrossrefMedlineGoogle Scholar