Background:

Serum creatinine concentration is widely used as an index of renal function, but this concentration is affected by factors other than glomerular filtration rate (GFR).

Objective:

To develop an equation to predict GFR from serum creatinine concentration and other factors.

Design:

Cross-sectional study of GFR, creatinine clearance, serum creatinine concentration, and demographic and clinical characteristics in patients with chronic renal disease.

Patients:

1628 patients enrolled in the baseline period of the Modification of Diet in Renal Disease (MDRD) Study, of whom 1070 were randomly selected as the training sample; the remaining 558 patients constituted the validation sample.

Methods:

The prediction equation was developed by stepwise regression applied to the training sample. The equation was then tested and compared with other prediction equations in the validation sample.

Results:

To simplify prediction of GFR, the equation included only demographic and serum variables. Independent factors associated with a lower GFR included a higher serum creatinine concentration, older age, female sex, nonblack ethnicity, higher serum urea nitrogen levels, and lower serum albumin levels (P < 0.001 for all factors). The multiple regression model explained 90.3% of the variance in the logarithm of GFR in the validation sample. Measured creatinine clearance overestimated GFR by 19%, and creatinine clearance predicted by the Cockcroft-Gault formula overestimated GFR by 16%. After adjustment for this overestimation, the percentage of variance of the logarithm of GFR predicted by measured creatinine clearance or the Cockcroft-Gault formula was 86.6% and 84.2%, respectively.

Conclusion:

The equation developed from the MDRD Study provided a more accurate estimate of GFR in our study group than measured creatinine clearance or other commonly used equations.

*For members of the Modification of Diet in Renal Disease Study Group, see N Engl J Med. 1994; 330:877-84.

References

  • 1. Smith HWThe Kidney: Structure and Function in Health and Disease. New York: Oxford Univ Pr; 1951:836-87. Google Scholar
  • 2. Levey ASMeasurement of renal function in chronic renal disease. Kidney Int1990;38:167-84. CrossrefMedlineGoogle Scholar
  • 3. Perrone RDMadias NELevey ASSerum creatinine as an index of renal function: new insights into old concepts. Clinical Chem1992;38:1933-53. CrossrefMedlineGoogle Scholar
  • 4. Cockcroft DWGault MHPrediction of creatinine clearance from serum creatinine. Nephron1976;16:31-41. CrossrefMedlineGoogle Scholar
  • 5. Parker RABennett WMPorter GAClinical estimation of creatinine clearance without urine collection. Dialysis and Transplantation1980;9:251-2. Google Scholar
  • 6. Sawyer WTCanaday BRPoe TEWebb CEGal PJoyner PUet al Variables affecting creatinine clearance prediction. Am J Hosp Pharm1983;40:2175-80. MedlineGoogle Scholar
  • 7. Bjornsson TDCocchetto DMMcGowan FXVerghese CPSedor FNomogram for estimating creatinine clearance. Clin Pharmacokinet1983;8:365-9. CrossrefMedlineGoogle Scholar
  • 8. Taylor GOBamgboye EAOyediran ABLonge OSerum creatinine and prediction formulae for creatinine clearance. Afr J Med Med Sci1982;11:175-81. MedlineGoogle Scholar
  • 9. Gates GFCreatinine clearance estimation from serum creatinine values: an analysis of three mathematical models of glomerular function. Am J Kidney Dis1985;5:199-205. CrossrefMedlineGoogle Scholar
  • 10. Jelliffe RWCreatinine clearance: bedside estimate [Letter]. Ann Intern Med1973;79:604-5. LinkGoogle Scholar
  • 11. Hallynck TSoep HHThomis JBoelaert JDaneels RFillastre JPet al Prediction of creatinine clearance from serum creatinine concentration based on lean body mass. Clin Pharm Ther1981;30:414-21. CrossrefMedlineGoogle Scholar
  • 12. Kampmann JSiersbaek-Nielsen KKristensen MHansen JMRapid evaluation of creatinine clearance. Acta Med Scand1974;196:517-20. CrossrefMedlineGoogle Scholar
  • 13. Bröchner-Mortensen JRödbro PSelection of routine method for determination of glomerular filtration rate in adult patients. Scand J Clin Lab Invest1976;36:35-43. CrossrefMedlineGoogle Scholar
  • 14. Tessitore NLo Schiavo CCorgnati APreviato GValvo ELupo Aet al 125I-iothalamate and creatinine clearances in patients with chronic renal diseases. Nephron1979;24:41-5. CrossrefMedlineGoogle Scholar
  • 15. Bauer JHBrooks CSBurch RNRenal function studies in man with advanced renal insufficiency. Am J Kidney Dis1982;2:30-5. CrossrefMedlineGoogle Scholar
  • 16. Van Lente FSuit PAssessment of renal function by serum creatinine and creatinine clearance: glomerular filtration rate estimated by four procedures. Clin Chem1989;35:2326-30. CrossrefMedlineGoogle Scholar
  • 17. Trollfors BAlestig KJagenburg RPrediction of glomerular filtration rate from serum creatinine, age, sex and body weight. Acta Med Scand1987;221:495-8. CrossrefMedlineGoogle Scholar
  • 18. Groth SAasted MVestergaard BScreening of kidney function by plasma creatinine and single-sample 51Cr-EDTA clearance determination—a comparison. Scand J Clin Lab Invest1989;49:707-10. CrossrefMedlineGoogle Scholar
  • 19. Lemann JBidani AKBain RPLewis EJRonde RDUse of the serum creatinine to estimate glomerular filtration rate in health and early diabetic nephropathy. Collaborative Study Group of Angiotensin Converting Enzyme Inhibition in Diabetic Nephropathy. Am J Kidney Dis1990;16:236-43. CrossrefMedlineGoogle Scholar
  • 20. DeSanto NGCoppola SAnastasio PCoscarella GCapasso GBellini Let al Predicted creatinine clearance to assess glomerular filtration rate in chronic renal disease in humans. Am J Nephrol1991;11:181-5. CrossrefMedlineGoogle Scholar
  • 21. Sampson MJDrury PLAccurate estimation of glomerular filtration rate in diabetic nephropathy from age, body weight, and serum creatinine. Diabetes Care1992;15:609-12. CrossrefMedlineGoogle Scholar
  • 22. Walser MDrew HHGuldan JLPrediction of glomerular filtration rate from serum creatinine concentration in advanced chronic renal failure. Kidney Int1993;44:1145-8. CrossrefMedlineGoogle Scholar
  • 23. Cochran MSt John AA comparison between estimates of GFR using [99mTc]DTPA clearance and the approximation of Cockroft and Gault. Aust N Z J Med1993;23:494-7. CrossrefMedlineGoogle Scholar
  • 24. Pollock CGyory AZHawkins TRoss MIbels LComparison of simultaneous renal clearances of true endogenous creatinine and subcutaneously administered iothalamate in man. Am J Nephrol1995;15:277-82. CrossrefMedlineGoogle Scholar
  • 25. U.S. Department of Health and Human Services. HCFA-2728-U4 (4-95). Form Approved: OMB No. 0938-0046, Health Care Financing Administration. Google Scholar
  • 26. American Society of Transplant Physicians. Scientific Symposium on Listing Criteria: Kidney. Bethesda, MD; 30 January 1997. Google Scholar
  • 27. Klahr SLevey ASBeck GJCaggiula AWHunsicker LKusek JWStriker GThe effects of dietary protein restriction and blood-pressure control on the progression of renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med1994;330:877-84. CrossrefMedlineGoogle Scholar
  • 28. Peterson JCAdler SBurkhart JMGreene THebert LAKing AJet al Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Ann Intern Med1995;123:754-62. LinkGoogle Scholar
  • 29. Levey ASAdler SCaggiula AWEngland BKGreene THunsicker LGet al Effects of dietary protein restriction on the progression of advanced renal disease in the Modification of Diet in Renal Disease Study. Am J Kidney Dis1996;27:652-63. CrossrefMedlineGoogle Scholar
  • 30. Effects of dietary protein restriction on the progression of moderate renal disease in the Modification of Diet in Renal Disease Study. J Am Soc Nephrol. 1996; 7:2616-25. Google Scholar
  • 31. Beck GJBerg RLCoggins CHGassman JJHunsicker LGWilliams GWDesign and statistical issues of the Modification of Diet in Renal Disease Trial. The Modification of Diet in Renal Disease Study Group. Control Clin Trials1991;12:566-86. CrossrefMedlineGoogle Scholar
  • 32. Kusek JWCoyne Tde Velasco ADrabik MJFinlay RAGassman JJet al Recruitment experience in the full-scale phase of the Modification of Diet in Renal Disease Study. Control Clin Trials1993;14:538-57. CrossrefMedlineGoogle Scholar
  • 33. Perrone RSteinman TIBeck GJSkibinski CIRoyal HLawlor Met al Utility of radioisotopic filtration markers in chronic renal insufficiency: simultaneous comparison of 125I-iothalamate, 169Yb-DTPA, 99mTc-DTPA, and inulin. The Modification of Diet in Renal Disease Study Group. Am J Kidney Dis1990;16:224-35. CrossrefMedlineGoogle Scholar
  • 34. Levey ASGreene TSchluchter MDCleary PATeschan PELorenz RAet al Glomerular filtration rate measurements in clinical trials. Modification of Diet in Renal Disease Study Group and the Diabetes Control and Complications Trial Research Group. J Am Soc Nephrol1993;4:1159-71. CrossrefMedlineGoogle Scholar
  • 35. Astra-8 Operations Manual. Fullerton, CA: Beckman. Google Scholar
  • 36. DuBois DDuBois EFA formula to estimate the approximate surface area if height and weight be known. Arch Intern Med1916;17:863-71. CrossrefGoogle Scholar
  • 37. Frisancho ARAnthropometric Standards for the Assessment of Growth and Nutritional Status. Ann Arbor, MI: Univ of Michigan Pr; 1990. Google Scholar
  • 38. Maroni BJSteinman TIMitch WEA method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int1985;27:58-65. CrossrefMedlineGoogle Scholar
  • 39. Buckalew VMBerg RLWang SRPorush JGRauch SSchulman GPrevalence of hypertension in 1,795 subjects with chronic renal disease: the modification of diet in renal disease study baseline cohort. Modification of Diet in Renal Disease Study Group. Am J Kidney Dis1996;28:811-21. CrossrefMedlineGoogle Scholar
  • 40. Heymsfield SBArteaga CMcManus CSmith JMoffitt SMeasurement of muscle mass in humans: validity of the 24-hour urinary creatinine method. Am J Clin Nutr1983;37:478-94. CrossrefMedlineGoogle Scholar
  • 41. Cohn SHAbesemis CZanzi IAloia JFYasumura SEllis KJBody elemental composition: comparison between black and white adults. Am J Physiol1977;232:E419-22. MedlineGoogle Scholar
  • 42. Harsha DWFrerichs RRBerenson GSDensitometry and anthropometry of black and white children. Hum Biol1978;50:261-80. MedlineGoogle Scholar
  • 43. Worrall JGPhongsathorn VHooper RJRacial variation in serum creatine kinase unrelated to lean body mass. Br J Rheumatol1990;29:371-3. CrossrefMedlineGoogle Scholar
  • 44. Effects of diet and antihypertensive therapy on creatinine clearance and serum creatinine concentration in the Modification of Diet in Renal Disease Study. J Am Soc Nephrol. 1996; 7:556-65. Google Scholar
  • 45. Short-term effects of protein intake, blood pressure, and antihypertensive therapy on glomerular filtration rate in the Modification of Diet in Renal Disease Study. J Am Soc Nephrol. 1996; 7:2097-109. Google Scholar
  • 46. Hartmann AEAccuracy of creatinine results reported by participants in the CAP Chemistry Survey Program. Arch Pathol Lab Med1985;109:1068-71. MedlineGoogle Scholar
  • 47. Levey ASGreene PBurkart JComprehensive assessment of the level of renal function at the initiation of dialysis in the MDRD study [Abstract]. MDRD Study Group. J Am Soc Nephrol1998;9:153A. Google Scholar
  • 48. Breyer-Lewis JAgodoa LCheek DGreene PMiddleton JO'Connor Det al Estimation of GFR from serum creatinine in the African-American Study of Kidney Disease [Abstract]. AASK Study Group. J Am Soc Nephrol1998;9:153A. Google Scholar
  • 49. Bedros FVKasiske BLEstimating glomerular filtration rate from serum creatinine in renal transplant recipients [Abstract]. J Am Soc Nephrol1998;9:666A. Google Scholar