Abstract

Objective: To determine and compare the prevalence of patent foramen ovale in patients with stroke of undetermined origin (cryptogenic) and in patients with stroke of determined origin to assess the possible role of patent foramen ovale as a risk factor for cryptogenic stroke.

Design: Cross-sectional study with nested case-control analysis.

Patients: A total of 146 patients (73 men, 73 women) with acute ischemic stroke referred to the echocardiography laboratory for evaluation.

Setting: Neurovascular Unit and Echocardiography Laboratory, Columbia-Presbyterian Medical Center, New York, New York.

Measurements: Patients were considered to have strokes of determined origin or cryptogenic strokes according to National Institute of Neurological Disorders and Stroke (NINDS) Stroke Data Bank criteria. The presence of patent foramen ovale was assessed by contrast echocardiography, performed blinded for type of stroke. The association between patent foramen ovale and type of stroke was tested after correcting for patients' demographic variables and stroke risk factors.

Results: The overall prevalence of patent foramen ovale was 26 of 146 patients (18%; 95% Cl, 11. 4% to 24.6%). Patients with cryptogenic stroke (31%) had a significantly higher prevalence of patent foramen ovale than did patients with an identifiable cause of stroke (69%) in both the younger (< 55 years; 48% compared with 4%; P < 0.001) and the older (≥ 55 years; 38% compared with 8%; P < 0.001) age groups. Multiple logistic regression analysis was used to identify the presence of a patent foramen ovale as strongly associated with the diagnosis of cryptogenic stroke (odds ratio, 7.2; Cl, 2.4 to 21.7), irrespective of patient age and other stroke risk factors.

Conclusions: Patients with cryptogenic stroke have a higher prevalence of patent foramen ovale than patients with stroke of determined cause in all age groups, even after correcting for the presence of recognized stroke risk factors. This identifies patent foramen ovale as a risk factor for cryptogenic stroke. Regardless of patient age, contrast echocardiography should be considered when the cause of stroke is unknown.

References

  • 1. Sacco REllenberg JMohr JTatemichi THier D, and Price T. Infarcts of undetermined cause: the NINCDS Stroke Data Bank. Ann Neurol. 1989;25:382-90. CrossrefMedlineGoogle Scholar
  • 2. Jones HCaplan LCome PSwinton L, and Breslin D. Cerebral emboli of paradoxical origin. Ann Neurol. 1983;13:314-9. CrossrefMedlineGoogle Scholar
  • 3. Harvey JTeague SAnderson JVoyles W, and Thadani U. Clinically silent atrial septal defects with evidence for cerebral embolization. Ann Intern Med. 1986;105:695-7. LinkGoogle Scholar
  • 4. Biller JJohnson MAdams HKerber RCorbett J, and Bruno A. Further observations on cerebral or retinal ischemia in patients with right-left intracardiac shunts. Arch Neurol. 1987;44: 740-3. CrossrefMedlineGoogle Scholar
  • 5. Webster MChancellor ASmith HSwift DSharpe D, and Bass N. Patent foramen ovale in young stroke patients. Lancet. 1988;2:11-2. CrossrefMedlineGoogle Scholar
  • 6. Jeanrenaud XBogousslavsky JPayot MRegli F, and Kappenberger L. Foramen ovale permeable et infarctus cerebral du sujet jeune. Schweiz Med Wochenschr. 1990;120:823-9. MedlineGoogle Scholar
  • 7. Lechat PMas JLascault GLoron PTheard M, and Klimczac M. Prevalence of patent foramen ovale in patients with stroke. N Engl J Med. 1988;318:1148-52. CrossrefMedlineGoogle Scholar
  • 8. Berger MHaimowitz AVan Tosh ABerdoff R, and Goldberg E. Quantitative assessment of pulmonary hypertension in patients with tricuspid regurgitation using continuous wave Doppler ultrasound. J Am Coll Cardiol. 1985;6:359-65. CrossrefMedlineGoogle Scholar
  • 9. Mohr JNichols F, and Tatemichi T. Classification and diagnosis of stroke. International Angiology. 1984;3:431-9. Google Scholar
  • 10. Breslow N and Day N. Statistical Methods in Cancer Research. Volume I: The Analysis of Case-control Studies. Lyon, France: IARC; 1980. Google Scholar
  • 11. Hart R and Miller V. Cerebral infarctions in young adults: a practical approach. Stroke. 1983;14:110-4. CrossrefMedlineGoogle Scholar
  • 12. Gross CShinar DMohr JHier DCaplan L, and Price T. Interobserver agreement in the diagnosis of stroke type. Arch Neurol. 1986;43:893-8. CrossrefMedlineGoogle Scholar
  • 13. Hagen PScholz D, and Edwards W. Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc. 1984;59:17-20. CrossrefMedlineGoogle Scholar
  • 14. Strunk BCheitlin MStulbarg M, and Schiller N. Right-to-left interatrial shunting through a patent foramen ovale despite normal intracardiac pressures. Am J Cardiol. 1987;60:413-5. CrossrefMedlineGoogle Scholar
  • 15. Lynch JSchuchard GGross C, and Wann L. Prevalence of right-to-left atrial shunting in a healthy population: detection by Valsalva maneuver contrast echocardiography. Am J Cardiol. 1984; 53:1478-80. CrossrefMedlineGoogle Scholar
  • 16. Rosenow EOsmundson P, and Brown M. Pulmonary embolism. Mayo Clin Proc. 1981;56:161-78. MedlineGoogle Scholar
  • 17. Dubourg OBesnainou FTerdjman MGueret PFarcot J, and Ferrier A. Diagnostic des dehiscences du septum interauriculaire par l'echocardiographie de contraste sensibilisee par la toux. Arch Mal Coeur Vaiss. 1986;79:193-201. MedlineGoogle Scholar
  • 18. Shub CDimopoulos ISeward JCallahan JTancredi R, and Schattenberg T. Sensitivity of two-dimensional echocardiography in the direct visualization of atrial septal defect utilizing the subcostal approach: experience with 154 patients. J Am Coll Cardiol. 1983;2:127-35. CrossrefMedlineGoogle Scholar
  • 19. Loscalzo J. Paradoxical embolism: clinical presentation, diagnostic strategies, and therapeutic options. Am Heart J. 1986;112:141-5. CrossrefMedlineGoogle Scholar
  • 20. Van Hare G and Silverman N. Contrast two-dimensional echocardiography in congenital heart disease: techniques, indications and clinical utility. J Am Coll Cardiol. 1989;13:673-86. CrossrefMedlineGoogle Scholar
  • 21. Bommer WShah PAllen HMeltzer R, and Kisslo J. The safety of contrast echocardiography: report of the Committee on Contrast Echocardiography for the American Society of Echocardiography. J Am Coll Cardiol. 1984;3:6-13. CrossrefMedlineGoogle Scholar
  • 22. Hofmann TKasper WMeinertz TGeibel A, and Just H. Echocardiographic evaluation of patients with clinically suspected arterial emboli. Lancet. 1990;336:1421-4. CrossrefMedlineGoogle Scholar
  • 23. Pearson ALabovitz ATatineni S, and Gomez C. Superiority of transesophageal echocardiography in detecting cardiac source of embolism in patients with cerebral ischemia of uncertain etiology. J Am Coll Cardiol. 1991;17:66-72. CrossrefMedlineGoogle Scholar
  • 24. Mohr J. Cryptogenic stroke [Editorial]. N Engl J Med. 1988;318: 1197-8. CrossrefMedlineGoogle Scholar
  • 25. Rocchini A. Transcatheter closure of atrial septal defect. Past, present and future. Circulation. 1990;82:1044-5. CrossrefMedlineGoogle Scholar
  • 26. Borow K and Karp R. Atrial septal defect—lessons from the past, directions for the future. N Engl J Med. 1990;323:1698-700. CrossrefMedlineGoogle Scholar
  • 27. Teague S and Sharma M. Detection of paradoxical cerebral echo contrast embolization by transcranial Doppler ultrasound. Stroke. 1991;22:740-5. CrossrefMedlineGoogle Scholar
  • 28. Di Tullio MMassaro AHoffmann MSacco RMohr J, and Homma S. Transcranial Doppler with contrast injection in stroke patients with patent foramen ovale. Circulation 1991;84:451. Google Scholar
  • 29. Nemec JMarwick TLorig RDavison MChimowitz M, and Litowitz H. Comparison of transcranial Doppler ultrasound and transesophageal contrast echocardiography in the detection of interatrial right-to-left shunts. Am J Cardiol. 1991;68:1498-502. CrossrefMedlineGoogle Scholar

This content is PDF only. To continue reading please click on the PDF icon.